Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℂ ) |
3 |
2
|
negcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → - 𝐴 ∈ ℂ ) |
4 |
|
sqrtval |
⊢ ( - 𝐴 ∈ ℂ → ( √ ‘ - 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ - 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
6 |
|
sqrtneglem |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ) ) |
7 |
|
ax-icn |
⊢ i ∈ ℂ |
8 |
|
resqrtcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ ) |
9 |
8
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℂ ) |
10 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( √ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( √ ‘ 𝐴 ) ) ∈ ℂ ) |
11 |
7 9 10
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( i · ( √ ‘ 𝐴 ) ) ∈ ℂ ) |
12 |
|
oveq1 |
⊢ ( 𝑥 = ( i · ( √ ‘ 𝐴 ) ) → ( 𝑥 ↑ 2 ) = ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) ) |
13 |
12
|
eqeq1d |
⊢ ( 𝑥 = ( i · ( √ ‘ 𝐴 ) ) → ( ( 𝑥 ↑ 2 ) = - 𝐴 ↔ ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = - 𝐴 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = ( i · ( √ ‘ 𝐴 ) ) → ( ℜ ‘ 𝑥 ) = ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ) |
15 |
14
|
breq2d |
⊢ ( 𝑥 = ( i · ( √ ‘ 𝐴 ) ) → ( 0 ≤ ( ℜ ‘ 𝑥 ) ↔ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ) ) |
16 |
|
oveq2 |
⊢ ( 𝑥 = ( i · ( √ ‘ 𝐴 ) ) → ( i · 𝑥 ) = ( i · ( i · ( √ ‘ 𝐴 ) ) ) ) |
17 |
|
neleq1 |
⊢ ( ( i · 𝑥 ) = ( i · ( i · ( √ ‘ 𝐴 ) ) ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ) ) |
18 |
16 17
|
syl |
⊢ ( 𝑥 = ( i · ( √ ‘ 𝐴 ) ) → ( ( i · 𝑥 ) ∉ ℝ+ ↔ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ) ) |
19 |
13 15 18
|
3anbi123d |
⊢ ( 𝑥 = ( i · ( √ ‘ 𝐴 ) ) → ( ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ) ) ) |
20 |
19
|
rspcev |
⊢ ( ( ( i · ( √ ‘ 𝐴 ) ) ∈ ℂ ∧ ( ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ) ) → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
21 |
11 6 20
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
22 |
|
sqrmo |
⊢ ( - 𝐴 ∈ ℂ → ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
23 |
3 22
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
24 |
|
reu5 |
⊢ ( ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ∧ ∃* 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
25 |
21 23 24
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) |
26 |
19
|
riota2 |
⊢ ( ( ( i · ( √ ‘ 𝐴 ) ) ∈ ℂ ∧ ∃! 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) → ( ( ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ) ↔ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( i · ( √ ‘ 𝐴 ) ) ) ) |
27 |
11 25 26
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( ( ( i · ( √ ‘ 𝐴 ) ) ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ ( i · ( √ ‘ 𝐴 ) ) ) ∧ ( i · ( i · ( √ ‘ 𝐴 ) ) ) ∉ ℝ+ ) ↔ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( i · ( √ ‘ 𝐴 ) ) ) ) |
28 |
6 27
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = - 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( i · ( √ ‘ 𝐴 ) ) ) |
29 |
5 28
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ - 𝐴 ) = ( i · ( √ ‘ 𝐴 ) ) ) |