Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) |
2 |
|
resqcl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
3 |
|
sqge0 |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 ↑ 2 ) ) |
4 |
2 3
|
jca |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 2 ) ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 2 ) ) ) |
6 |
|
sqrtsq2 |
⊢ ( ( ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 2 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( ( √ ‘ ( 𝐴 ↑ 2 ) ) = 𝐴 ↔ ( 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) ) |
7 |
5 6
|
mpancom |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ ( 𝐴 ↑ 2 ) ) = 𝐴 ↔ ( 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) ) |
8 |
1 7
|
mpbiri |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ ( 𝐴 ↑ 2 ) ) = 𝐴 ) |