| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resqrtcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ ) |
| 2 |
|
sqrtge0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 0 ≤ ( √ ‘ 𝐴 ) ) |
| 3 |
1 2
|
jca |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝐴 ) ) ) |
| 4 |
|
sq11 |
⊢ ( ( ( ( √ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝐴 ) ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( √ ‘ 𝐴 ) = 𝐵 ) ) |
| 5 |
3 4
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ ( √ ‘ 𝐴 ) = 𝐵 ) ) |
| 6 |
|
resqrtth |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 8 |
7
|
eqeq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ↔ 𝐴 = ( 𝐵 ↑ 2 ) ) ) |
| 9 |
5 8
|
bitr3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( √ ‘ 𝐴 ) = 𝐵 ↔ 𝐴 = ( 𝐵 ↑ 2 ) ) ) |