Metamath Proof Explorer
		
		
		
		Description:  Square root of square.  (Contributed by Mario Carneiro, 29-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | resqrcld.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | resqrcld.2 | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
				
					|  | Assertion | sqrtsqd | ⊢  ( 𝜑  →  ( √ ‘ ( 𝐴 ↑ 2 ) )  =  𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resqrcld.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | resqrcld.2 | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
						
							| 3 |  | sqrtsq | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( √ ‘ ( 𝐴 ↑ 2 ) )  =  𝐴 ) | 
						
							| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑  →  ( √ ‘ ( 𝐴 ↑ 2 ) )  =  𝐴 ) |