Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ↑ 2 ) = 𝑦 ↔ ( 𝑥 ↑ 2 ) = 𝐴 ) ) |
2 |
1
|
3anbi1d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑥 ↑ 2 ) = 𝑦 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ↔ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
3 |
2
|
riotabidv |
⊢ ( 𝑦 = 𝐴 → ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝑦 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
4 |
|
df-sqrt |
⊢ √ = ( 𝑦 ∈ ℂ ↦ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝑦 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |
5 |
|
riotaex |
⊢ ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ∈ V |
6 |
3 4 5
|
fvmpt |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝐴 ∧ 0 ≤ ( ℜ ‘ 𝑥 ) ∧ ( i · 𝑥 ) ∉ ℝ+ ) ) ) |