Description: Square root theorem. Theorem I.35 of Apostol p. 29. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | abscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| Assertion | sqsqrtd | ⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | sqrtth | ⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |