Description: Square root theorem. Theorem I.35 of Apostol p. 29. (Contributed by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | abscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
Assertion | sqsqrtd | ⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
2 | sqrtth | ⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |