Metamath Proof Explorer


Theorem sqsqrti

Description: Square of square root. (Contributed by NM, 11-Aug-1999)

Ref Expression
Hypothesis sqrtthi.1 𝐴 ∈ ℝ
Assertion sqsqrti ( 0 ≤ 𝐴 → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 sqrtthi.1 𝐴 ∈ ℝ
2 resqrtth ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 )
3 1 2 mpan ( 0 ≤ 𝐴 → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 )