Description: Swap the order of subtraction in a square. (Contributed by Scott Fenton, 10-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqsubswap | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) ↑ 2 ) = ( ( 𝐵 − 𝐴 ) ↑ 2 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) | |
| 2 | sqneg | ⊢ ( ( 𝐴 − 𝐵 ) ∈ ℂ → ( - ( 𝐴 − 𝐵 ) ↑ 2 ) = ( ( 𝐴 − 𝐵 ) ↑ 2 ) ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - ( 𝐴 − 𝐵 ) ↑ 2 ) = ( ( 𝐴 − 𝐵 ) ↑ 2 ) ) | 
| 4 | negsubdi2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐴 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - ( 𝐴 − 𝐵 ) ↑ 2 ) = ( ( 𝐵 − 𝐴 ) ↑ 2 ) ) | 
| 6 | 3 5 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) ↑ 2 ) = ( ( 𝐵 − 𝐴 ) ↑ 2 ) ) |