Description: Swap the order of subtraction in a square. (Contributed by Scott Fenton, 10-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | sqsubswap | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) ↑ 2 ) = ( ( 𝐵 − 𝐴 ) ↑ 2 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) | |
2 | sqneg | ⊢ ( ( 𝐴 − 𝐵 ) ∈ ℂ → ( - ( 𝐴 − 𝐵 ) ↑ 2 ) = ( ( 𝐴 − 𝐵 ) ↑ 2 ) ) | |
3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - ( 𝐴 − 𝐵 ) ↑ 2 ) = ( ( 𝐴 − 𝐵 ) ↑ 2 ) ) |
4 | negsubdi2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐴 ) ) | |
5 | 4 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - ( 𝐴 − 𝐵 ) ↑ 2 ) = ( ( 𝐵 − 𝐴 ) ↑ 2 ) ) |
6 | 3 5 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) ↑ 2 ) = ( ( 𝐵 − 𝐴 ) ↑ 2 ) ) |