Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 ↔ ( 0 < 𝐴 ∨ 0 = 𝐴 ) ) ) |
4 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 0 < 𝑥 ↔ 0 < 𝐴 ) ) |
5 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 < 𝑥 ↔ 𝐴 < 𝐴 ) ) |
6 |
4 5
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 0 < 𝑥 → 𝐴 < 𝑥 ) ↔ ( 0 < 𝐴 → 𝐴 < 𝐴 ) ) ) |
7 |
6
|
rspcv |
⊢ ( 𝐴 ∈ ℝ → ( ∀ 𝑥 ∈ ℝ ( 0 < 𝑥 → 𝐴 < 𝑥 ) → ( 0 < 𝐴 → 𝐴 < 𝐴 ) ) ) |
8 |
|
ltnr |
⊢ ( 𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴 ) |
9 |
8
|
pm2.21d |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 𝐴 → 𝐴 = 0 ) ) |
10 |
9
|
com12 |
⊢ ( 𝐴 < 𝐴 → ( 𝐴 ∈ ℝ → 𝐴 = 0 ) ) |
11 |
10
|
imim2i |
⊢ ( ( 0 < 𝐴 → 𝐴 < 𝐴 ) → ( 0 < 𝐴 → ( 𝐴 ∈ ℝ → 𝐴 = 0 ) ) ) |
12 |
11
|
com13 |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → ( ( 0 < 𝐴 → 𝐴 < 𝐴 ) → 𝐴 = 0 ) ) ) |
13 |
7 12
|
syl5d |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → ( ∀ 𝑥 ∈ ℝ ( 0 < 𝑥 → 𝐴 < 𝑥 ) → 𝐴 = 0 ) ) ) |
14 |
|
ax-1 |
⊢ ( 𝐴 = 0 → ( ∀ 𝑥 ∈ ℝ ( 0 < 𝑥 → 𝐴 < 𝑥 ) → 𝐴 = 0 ) ) |
15 |
14
|
eqcoms |
⊢ ( 0 = 𝐴 → ( ∀ 𝑥 ∈ ℝ ( 0 < 𝑥 → 𝐴 < 𝑥 ) → 𝐴 = 0 ) ) |
16 |
15
|
a1i |
⊢ ( 𝐴 ∈ ℝ → ( 0 = 𝐴 → ( ∀ 𝑥 ∈ ℝ ( 0 < 𝑥 → 𝐴 < 𝑥 ) → 𝐴 = 0 ) ) ) |
17 |
13 16
|
jaod |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 𝐴 ∨ 0 = 𝐴 ) → ( ∀ 𝑥 ∈ ℝ ( 0 < 𝑥 → 𝐴 < 𝑥 ) → 𝐴 = 0 ) ) ) |
18 |
3 17
|
sylbid |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 → ( ∀ 𝑥 ∈ ℝ ( 0 < 𝑥 → 𝐴 < 𝑥 ) → 𝐴 = 0 ) ) ) |
19 |
18
|
3imp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀ 𝑥 ∈ ℝ ( 0 < 𝑥 → 𝐴 < 𝑥 ) ) → 𝐴 = 0 ) |