Metamath Proof Explorer


Theorem sqvald

Description: Value of square. Inference version. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis expcld.1 ( 𝜑𝐴 ∈ ℂ )
Assertion sqvald ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 expcld.1 ( 𝜑𝐴 ∈ ℂ )
2 sqval ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) )
3 1 2 syl ( 𝜑 → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) )