Metamath Proof Explorer


Theorem sqvali

Description: Value of square. Inference version. (Contributed by NM, 1-Aug-1999)

Ref Expression
Hypothesis sqval.1 𝐴 ∈ ℂ
Assertion sqvali ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 )

Proof

Step Hyp Ref Expression
1 sqval.1 𝐴 ∈ ℂ
2 sqval ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) )
3 1 2 ax-mp ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 )