Step |
Hyp |
Ref |
Expression |
1 |
|
sqwvfourb.t |
⊢ 𝑇 = ( 2 · π ) |
2 |
|
sqwvfourb.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ) |
3 |
|
sqwvfourb.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
pire |
⊢ π ∈ ℝ |
5 |
4
|
renegcli |
⊢ - π ∈ ℝ |
6 |
5
|
a1i |
⊢ ( 𝜑 → - π ∈ ℝ ) |
7 |
4
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
8 |
|
0re |
⊢ 0 ∈ ℝ |
9 |
|
negpilt0 |
⊢ - π < 0 |
10 |
5 8 9
|
ltleii |
⊢ - π ≤ 0 |
11 |
|
pipos |
⊢ 0 < π |
12 |
8 4 11
|
ltleii |
⊢ 0 ≤ π |
13 |
5 4
|
elicc2i |
⊢ ( 0 ∈ ( - π [,] π ) ↔ ( 0 ∈ ℝ ∧ - π ≤ 0 ∧ 0 ≤ π ) ) |
14 |
8 10 12 13
|
mpbir3an |
⊢ 0 ∈ ( - π [,] π ) |
15 |
14
|
a1i |
⊢ ( 𝜑 → 0 ∈ ( - π [,] π ) ) |
16 |
|
elioore |
⊢ ( 𝑥 ∈ ( - π (,) π ) → 𝑥 ∈ ℝ ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → 𝑥 ∈ ℝ ) |
18 |
|
1re |
⊢ 1 ∈ ℝ |
19 |
18
|
renegcli |
⊢ - 1 ∈ ℝ |
20 |
18 19
|
ifcli |
⊢ if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ∈ ℝ |
21 |
2
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) = if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ) |
22 |
17 20 21
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → ( 𝐹 ‘ 𝑥 ) = if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ) |
23 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ∈ ℝ ) |
24 |
23
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ∈ ℂ ) |
25 |
22 24
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
26 |
3
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → 𝑁 ∈ ℂ ) |
28 |
17
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → 𝑥 ∈ ℂ ) |
29 |
27 28
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → ( 𝑁 · 𝑥 ) ∈ ℂ ) |
30 |
29
|
sincld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → ( sin ‘ ( 𝑁 · 𝑥 ) ) ∈ ℂ ) |
31 |
25 30
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ∈ ℂ ) |
32 |
|
elioore |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 𝑥 ∈ ℝ ) |
33 |
32 20 21
|
sylancl |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( 𝐹 ‘ 𝑥 ) = if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ) |
34 |
4
|
a1i |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → π ∈ ℝ ) |
35 |
|
2rp |
⊢ 2 ∈ ℝ+ |
36 |
|
pirp |
⊢ π ∈ ℝ+ |
37 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ π ∈ ℝ+ ) → ( 2 · π ) ∈ ℝ+ ) |
38 |
35 36 37
|
mp2an |
⊢ ( 2 · π ) ∈ ℝ+ |
39 |
1 38
|
eqeltri |
⊢ 𝑇 ∈ ℝ+ |
40 |
39
|
a1i |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 𝑇 ∈ ℝ+ ) |
41 |
32 40
|
modcld |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( 𝑥 mod 𝑇 ) ∈ ℝ ) |
42 |
|
picn |
⊢ π ∈ ℂ |
43 |
42
|
2timesi |
⊢ ( 2 · π ) = ( π + π ) |
44 |
1 43
|
eqtri |
⊢ 𝑇 = ( π + π ) |
45 |
44
|
oveq2i |
⊢ ( - π + 𝑇 ) = ( - π + ( π + π ) ) |
46 |
5
|
recni |
⊢ - π ∈ ℂ |
47 |
46 42 42
|
addassi |
⊢ ( ( - π + π ) + π ) = ( - π + ( π + π ) ) |
48 |
42
|
negidi |
⊢ ( π + - π ) = 0 |
49 |
42 46 48
|
addcomli |
⊢ ( - π + π ) = 0 |
50 |
49
|
oveq1i |
⊢ ( ( - π + π ) + π ) = ( 0 + π ) |
51 |
42
|
addid2i |
⊢ ( 0 + π ) = π |
52 |
50 51
|
eqtri |
⊢ ( ( - π + π ) + π ) = π |
53 |
45 47 52
|
3eqtr2ri |
⊢ π = ( - π + 𝑇 ) |
54 |
53
|
a1i |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → π = ( - π + 𝑇 ) ) |
55 |
5
|
a1i |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → - π ∈ ℝ ) |
56 |
|
2re |
⊢ 2 ∈ ℝ |
57 |
56 4
|
remulcli |
⊢ ( 2 · π ) ∈ ℝ |
58 |
1 57
|
eqeltri |
⊢ 𝑇 ∈ ℝ |
59 |
58
|
a1i |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 𝑇 ∈ ℝ ) |
60 |
5
|
rexri |
⊢ - π ∈ ℝ* |
61 |
|
0xr |
⊢ 0 ∈ ℝ* |
62 |
|
ioogtlb |
⊢ ( ( - π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝑥 ∈ ( - π (,) 0 ) ) → - π < 𝑥 ) |
63 |
60 61 62
|
mp3an12 |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → - π < 𝑥 ) |
64 |
55 32 59 63
|
ltadd1dd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( - π + 𝑇 ) < ( 𝑥 + 𝑇 ) ) |
65 |
54 64
|
eqbrtrd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → π < ( 𝑥 + 𝑇 ) ) |
66 |
58
|
recni |
⊢ 𝑇 ∈ ℂ |
67 |
66
|
mulid2i |
⊢ ( 1 · 𝑇 ) = 𝑇 |
68 |
67
|
eqcomi |
⊢ 𝑇 = ( 1 · 𝑇 ) |
69 |
68
|
oveq2i |
⊢ ( 𝑥 + 𝑇 ) = ( 𝑥 + ( 1 · 𝑇 ) ) |
70 |
69
|
oveq1i |
⊢ ( ( 𝑥 + 𝑇 ) mod 𝑇 ) = ( ( 𝑥 + ( 1 · 𝑇 ) ) mod 𝑇 ) |
71 |
32 59
|
readdcld |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( 𝑥 + 𝑇 ) ∈ ℝ ) |
72 |
|
0red |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 0 ∈ ℝ ) |
73 |
11
|
a1i |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 0 < π ) |
74 |
72 34 71 73 65
|
lttrd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 0 < ( 𝑥 + 𝑇 ) ) |
75 |
72 71 74
|
ltled |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 0 ≤ ( 𝑥 + 𝑇 ) ) |
76 |
|
iooltub |
⊢ ( ( - π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝑥 ∈ ( - π (,) 0 ) ) → 𝑥 < 0 ) |
77 |
60 61 76
|
mp3an12 |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 𝑥 < 0 ) |
78 |
32 72 59 77
|
ltadd1dd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( 𝑥 + 𝑇 ) < ( 0 + 𝑇 ) ) |
79 |
59
|
recnd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 𝑇 ∈ ℂ ) |
80 |
79
|
addid2d |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( 0 + 𝑇 ) = 𝑇 ) |
81 |
78 80
|
breqtrd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( 𝑥 + 𝑇 ) < 𝑇 ) |
82 |
|
modid |
⊢ ( ( ( ( 𝑥 + 𝑇 ) ∈ ℝ ∧ 𝑇 ∈ ℝ+ ) ∧ ( 0 ≤ ( 𝑥 + 𝑇 ) ∧ ( 𝑥 + 𝑇 ) < 𝑇 ) ) → ( ( 𝑥 + 𝑇 ) mod 𝑇 ) = ( 𝑥 + 𝑇 ) ) |
83 |
71 40 75 81 82
|
syl22anc |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( ( 𝑥 + 𝑇 ) mod 𝑇 ) = ( 𝑥 + 𝑇 ) ) |
84 |
|
1zzd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 1 ∈ ℤ ) |
85 |
|
modcyc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ∧ 1 ∈ ℤ ) → ( ( 𝑥 + ( 1 · 𝑇 ) ) mod 𝑇 ) = ( 𝑥 mod 𝑇 ) ) |
86 |
32 40 84 85
|
syl3anc |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( ( 𝑥 + ( 1 · 𝑇 ) ) mod 𝑇 ) = ( 𝑥 mod 𝑇 ) ) |
87 |
70 83 86
|
3eqtr3a |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( 𝑥 + 𝑇 ) = ( 𝑥 mod 𝑇 ) ) |
88 |
65 87
|
breqtrd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → π < ( 𝑥 mod 𝑇 ) ) |
89 |
34 41 88
|
ltnsymd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ¬ ( 𝑥 mod 𝑇 ) < π ) |
90 |
89
|
iffalsed |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) = - 1 ) |
91 |
33 90
|
eqtrd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( 𝐹 ‘ 𝑥 ) = - 1 ) |
92 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → ( 𝐹 ‘ 𝑥 ) = - 1 ) |
93 |
92
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) = ( - 1 · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ) |
94 |
93
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π (,) 0 ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ) = ( 𝑥 ∈ ( - π (,) 0 ) ↦ ( - 1 · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ) ) |
95 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
96 |
95
|
a1i |
⊢ ( 𝜑 → - 1 ∈ ℂ ) |
97 |
3
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → 𝑁 ∈ ℝ ) |
99 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → 𝑥 ∈ ℝ ) |
100 |
98 99
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → ( 𝑁 · 𝑥 ) ∈ ℝ ) |
101 |
100
|
resincld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → ( sin ‘ ( 𝑁 · 𝑥 ) ) ∈ ℝ ) |
102 |
|
ioossicc |
⊢ ( - π (,) 0 ) ⊆ ( - π [,] 0 ) |
103 |
102
|
a1i |
⊢ ( 𝜑 → ( - π (,) 0 ) ⊆ ( - π [,] 0 ) ) |
104 |
|
ioombl |
⊢ ( - π (,) 0 ) ∈ dom vol |
105 |
104
|
a1i |
⊢ ( 𝜑 → ( - π (,) 0 ) ∈ dom vol ) |
106 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] 0 ) ) → 𝑁 ∈ ℝ ) |
107 |
|
iccssre |
⊢ ( ( - π ∈ ℝ ∧ 0 ∈ ℝ ) → ( - π [,] 0 ) ⊆ ℝ ) |
108 |
5 8 107
|
mp2an |
⊢ ( - π [,] 0 ) ⊆ ℝ |
109 |
108
|
sseli |
⊢ ( 𝑥 ∈ ( - π [,] 0 ) → 𝑥 ∈ ℝ ) |
110 |
109
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] 0 ) ) → 𝑥 ∈ ℝ ) |
111 |
106 110
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] 0 ) ) → ( 𝑁 · 𝑥 ) ∈ ℝ ) |
112 |
111
|
resincld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] 0 ) ) → ( sin ‘ ( 𝑁 · 𝑥 ) ) ∈ ℝ ) |
113 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
114 |
|
sincn |
⊢ sin ∈ ( ℂ –cn→ ℂ ) |
115 |
114
|
a1i |
⊢ ( 𝜑 → sin ∈ ( ℂ –cn→ ℂ ) ) |
116 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
117 |
108 116
|
sstri |
⊢ ( - π [,] 0 ) ⊆ ℂ |
118 |
117
|
a1i |
⊢ ( 𝜑 → ( - π [,] 0 ) ⊆ ℂ ) |
119 |
|
ssid |
⊢ ℂ ⊆ ℂ |
120 |
119
|
a1i |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
121 |
118 26 120
|
constcncfg |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π [,] 0 ) ↦ 𝑁 ) ∈ ( ( - π [,] 0 ) –cn→ ℂ ) ) |
122 |
118 120
|
idcncfg |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π [,] 0 ) ↦ 𝑥 ) ∈ ( ( - π [,] 0 ) –cn→ ℂ ) ) |
123 |
121 122
|
mulcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π [,] 0 ) ↦ ( 𝑁 · 𝑥 ) ) ∈ ( ( - π [,] 0 ) –cn→ ℂ ) ) |
124 |
115 123
|
cncfmpt1f |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π [,] 0 ) ↦ ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ∈ ( ( - π [,] 0 ) –cn→ ℂ ) ) |
125 |
|
cniccibl |
⊢ ( ( - π ∈ ℝ ∧ 0 ∈ ℝ ∧ ( 𝑥 ∈ ( - π [,] 0 ) ↦ ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ∈ ( ( - π [,] 0 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( - π [,] 0 ) ↦ ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ∈ 𝐿1 ) |
126 |
6 113 124 125
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π [,] 0 ) ↦ ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ∈ 𝐿1 ) |
127 |
103 105 112 126
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π (,) 0 ) ↦ ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ∈ 𝐿1 ) |
128 |
96 101 127
|
iblmulc2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π (,) 0 ) ↦ ( - 1 · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ) ∈ 𝐿1 ) |
129 |
94 128
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π (,) 0 ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ) ∈ 𝐿1 ) |
130 |
60
|
a1i |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → - π ∈ ℝ* ) |
131 |
4
|
rexri |
⊢ π ∈ ℝ* |
132 |
131
|
a1i |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → π ∈ ℝ* ) |
133 |
|
elioore |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 𝑥 ∈ ℝ ) |
134 |
5
|
a1i |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → - π ∈ ℝ ) |
135 |
|
0red |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 0 ∈ ℝ ) |
136 |
9
|
a1i |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → - π < 0 ) |
137 |
|
ioogtlb |
⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 𝑥 ∈ ( 0 (,) π ) ) → 0 < 𝑥 ) |
138 |
61 131 137
|
mp3an12 |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 0 < 𝑥 ) |
139 |
134 135 133 136 138
|
lttrd |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → - π < 𝑥 ) |
140 |
|
iooltub |
⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 𝑥 ∈ ( 0 (,) π ) ) → 𝑥 < π ) |
141 |
61 131 140
|
mp3an12 |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 𝑥 < π ) |
142 |
130 132 133 139 141
|
eliood |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 𝑥 ∈ ( - π (,) π ) ) |
143 |
142 22
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( 𝐹 ‘ 𝑥 ) = if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ) |
144 |
39
|
a1i |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 𝑇 ∈ ℝ+ ) |
145 |
135 133 138
|
ltled |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 0 ≤ 𝑥 ) |
146 |
4
|
a1i |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → π ∈ ℝ ) |
147 |
58
|
a1i |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 𝑇 ∈ ℝ ) |
148 |
|
2timesgt |
⊢ ( π ∈ ℝ+ → π < ( 2 · π ) ) |
149 |
36 148
|
ax-mp |
⊢ π < ( 2 · π ) |
150 |
149 1
|
breqtrri |
⊢ π < 𝑇 |
151 |
150
|
a1i |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → π < 𝑇 ) |
152 |
133 146 147 141 151
|
lttrd |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 𝑥 < 𝑇 ) |
153 |
|
modid |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ) ∧ ( 0 ≤ 𝑥 ∧ 𝑥 < 𝑇 ) ) → ( 𝑥 mod 𝑇 ) = 𝑥 ) |
154 |
133 144 145 152 153
|
syl22anc |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( 𝑥 mod 𝑇 ) = 𝑥 ) |
155 |
154 141
|
eqbrtrd |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( 𝑥 mod 𝑇 ) < π ) |
156 |
155
|
iftrued |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) = 1 ) |
157 |
156
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) = 1 ) |
158 |
143 157
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( 𝐹 ‘ 𝑥 ) = 1 ) |
159 |
158
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) = ( 1 · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ) |
160 |
142 30
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( sin ‘ ( 𝑁 · 𝑥 ) ) ∈ ℂ ) |
161 |
160
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( 1 · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) = ( sin ‘ ( 𝑁 · 𝑥 ) ) ) |
162 |
159 161
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) = ( sin ‘ ( 𝑁 · 𝑥 ) ) ) |
163 |
162
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 (,) π ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 0 (,) π ) ↦ ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ) |
164 |
|
ioossicc |
⊢ ( 0 (,) π ) ⊆ ( 0 [,] π ) |
165 |
164
|
a1i |
⊢ ( 𝜑 → ( 0 (,) π ) ⊆ ( 0 [,] π ) ) |
166 |
|
ioombl |
⊢ ( 0 (,) π ) ∈ dom vol |
167 |
166
|
a1i |
⊢ ( 𝜑 → ( 0 (,) π ) ∈ dom vol ) |
168 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] π ) ) → 𝑁 ∈ ℝ ) |
169 |
|
iccssre |
⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ) → ( 0 [,] π ) ⊆ ℝ ) |
170 |
8 4 169
|
mp2an |
⊢ ( 0 [,] π ) ⊆ ℝ |
171 |
170
|
sseli |
⊢ ( 𝑥 ∈ ( 0 [,] π ) → 𝑥 ∈ ℝ ) |
172 |
171
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] π ) ) → 𝑥 ∈ ℝ ) |
173 |
168 172
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] π ) ) → ( 𝑁 · 𝑥 ) ∈ ℝ ) |
174 |
173
|
resincld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] π ) ) → ( sin ‘ ( 𝑁 · 𝑥 ) ) ∈ ℝ ) |
175 |
170 116
|
sstri |
⊢ ( 0 [,] π ) ⊆ ℂ |
176 |
175
|
a1i |
⊢ ( 𝜑 → ( 0 [,] π ) ⊆ ℂ ) |
177 |
176 26 120
|
constcncfg |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] π ) ↦ 𝑁 ) ∈ ( ( 0 [,] π ) –cn→ ℂ ) ) |
178 |
176 120
|
idcncfg |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] π ) ↦ 𝑥 ) ∈ ( ( 0 [,] π ) –cn→ ℂ ) ) |
179 |
177 178
|
mulcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] π ) ↦ ( 𝑁 · 𝑥 ) ) ∈ ( ( 0 [,] π ) –cn→ ℂ ) ) |
180 |
115 179
|
cncfmpt1f |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] π ) ↦ ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ∈ ( ( 0 [,] π ) –cn→ ℂ ) ) |
181 |
|
cniccibl |
⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ∧ ( 𝑥 ∈ ( 0 [,] π ) ↦ ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ∈ ( ( 0 [,] π ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 0 [,] π ) ↦ ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ∈ 𝐿1 ) |
182 |
113 7 180 181
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] π ) ↦ ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ∈ 𝐿1 ) |
183 |
165 167 174 182
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 (,) π ) ↦ ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ∈ 𝐿1 ) |
184 |
163 183
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 (,) π ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ) ∈ 𝐿1 ) |
185 |
6 7 15 31 129 184
|
itgsplitioo |
⊢ ( 𝜑 → ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 = ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) ) |
186 |
185
|
oveq1d |
⊢ ( 𝜑 → ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 / π ) = ( ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) / π ) ) |
187 |
91
|
oveq1d |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) = ( - 1 · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ) |
188 |
187
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) = ( - 1 · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ) |
189 |
60
|
a1i |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → - π ∈ ℝ* ) |
190 |
131
|
a1i |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → π ∈ ℝ* ) |
191 |
32 72 34 77 73
|
lttrd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 𝑥 < π ) |
192 |
189 190 32 63 191
|
eliood |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 𝑥 ∈ ( - π (,) π ) ) |
193 |
192 30
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → ( sin ‘ ( 𝑁 · 𝑥 ) ) ∈ ℂ ) |
194 |
193
|
mulm1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → ( - 1 · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) = - ( sin ‘ ( 𝑁 · 𝑥 ) ) ) |
195 |
188 194
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) = - ( sin ‘ ( 𝑁 · 𝑥 ) ) ) |
196 |
195
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 = ∫ ( - π (,) 0 ) - ( sin ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 ) |
197 |
101 127
|
itgneg |
⊢ ( 𝜑 → - ∫ ( - π (,) 0 ) ( sin ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 = ∫ ( - π (,) 0 ) - ( sin ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 ) |
198 |
3
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
199 |
10
|
a1i |
⊢ ( 𝜑 → - π ≤ 0 ) |
200 |
26 198 6 113 199
|
itgsincmulx |
⊢ ( 𝜑 → ∫ ( - π (,) 0 ) ( sin ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 = ( ( ( cos ‘ ( 𝑁 · - π ) ) − ( cos ‘ ( 𝑁 · 0 ) ) ) / 𝑁 ) ) |
201 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
202 |
|
cosknegpi |
⊢ ( 𝑁 ∈ ℤ → ( cos ‘ ( 𝑁 · - π ) ) = if ( 2 ∥ 𝑁 , 1 , - 1 ) ) |
203 |
201 202
|
syl |
⊢ ( 𝜑 → ( cos ‘ ( 𝑁 · - π ) ) = if ( 2 ∥ 𝑁 , 1 , - 1 ) ) |
204 |
26
|
mul01d |
⊢ ( 𝜑 → ( 𝑁 · 0 ) = 0 ) |
205 |
204
|
fveq2d |
⊢ ( 𝜑 → ( cos ‘ ( 𝑁 · 0 ) ) = ( cos ‘ 0 ) ) |
206 |
|
cos0 |
⊢ ( cos ‘ 0 ) = 1 |
207 |
205 206
|
eqtrdi |
⊢ ( 𝜑 → ( cos ‘ ( 𝑁 · 0 ) ) = 1 ) |
208 |
203 207
|
oveq12d |
⊢ ( 𝜑 → ( ( cos ‘ ( 𝑁 · - π ) ) − ( cos ‘ ( 𝑁 · 0 ) ) ) = ( if ( 2 ∥ 𝑁 , 1 , - 1 ) − 1 ) ) |
209 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
210 |
|
iftrue |
⊢ ( 2 ∥ 𝑁 → if ( 2 ∥ 𝑁 , 1 , - 1 ) = 1 ) |
211 |
210
|
oveq1d |
⊢ ( 2 ∥ 𝑁 → ( if ( 2 ∥ 𝑁 , 1 , - 1 ) − 1 ) = ( 1 − 1 ) ) |
212 |
|
iftrue |
⊢ ( 2 ∥ 𝑁 → if ( 2 ∥ 𝑁 , 0 , - 2 ) = 0 ) |
213 |
209 211 212
|
3eqtr4a |
⊢ ( 2 ∥ 𝑁 → ( if ( 2 ∥ 𝑁 , 1 , - 1 ) − 1 ) = if ( 2 ∥ 𝑁 , 0 , - 2 ) ) |
214 |
|
iffalse |
⊢ ( ¬ 2 ∥ 𝑁 → if ( 2 ∥ 𝑁 , 1 , - 1 ) = - 1 ) |
215 |
214
|
oveq1d |
⊢ ( ¬ 2 ∥ 𝑁 → ( if ( 2 ∥ 𝑁 , 1 , - 1 ) − 1 ) = ( - 1 − 1 ) ) |
216 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
217 |
|
negdi2 |
⊢ ( ( 1 ∈ ℂ ∧ 1 ∈ ℂ ) → - ( 1 + 1 ) = ( - 1 − 1 ) ) |
218 |
216 216 217
|
mp2an |
⊢ - ( 1 + 1 ) = ( - 1 − 1 ) |
219 |
218
|
eqcomi |
⊢ ( - 1 − 1 ) = - ( 1 + 1 ) |
220 |
219
|
a1i |
⊢ ( ¬ 2 ∥ 𝑁 → ( - 1 − 1 ) = - ( 1 + 1 ) ) |
221 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
222 |
221
|
negeqi |
⊢ - ( 1 + 1 ) = - 2 |
223 |
|
iffalse |
⊢ ( ¬ 2 ∥ 𝑁 → if ( 2 ∥ 𝑁 , 0 , - 2 ) = - 2 ) |
224 |
222 223
|
eqtr4id |
⊢ ( ¬ 2 ∥ 𝑁 → - ( 1 + 1 ) = if ( 2 ∥ 𝑁 , 0 , - 2 ) ) |
225 |
215 220 224
|
3eqtrd |
⊢ ( ¬ 2 ∥ 𝑁 → ( if ( 2 ∥ 𝑁 , 1 , - 1 ) − 1 ) = if ( 2 ∥ 𝑁 , 0 , - 2 ) ) |
226 |
213 225
|
pm2.61i |
⊢ ( if ( 2 ∥ 𝑁 , 1 , - 1 ) − 1 ) = if ( 2 ∥ 𝑁 , 0 , - 2 ) |
227 |
208 226
|
eqtrdi |
⊢ ( 𝜑 → ( ( cos ‘ ( 𝑁 · - π ) ) − ( cos ‘ ( 𝑁 · 0 ) ) ) = if ( 2 ∥ 𝑁 , 0 , - 2 ) ) |
228 |
227
|
oveq1d |
⊢ ( 𝜑 → ( ( ( cos ‘ ( 𝑁 · - π ) ) − ( cos ‘ ( 𝑁 · 0 ) ) ) / 𝑁 ) = ( if ( 2 ∥ 𝑁 , 0 , - 2 ) / 𝑁 ) ) |
229 |
200 228
|
eqtrd |
⊢ ( 𝜑 → ∫ ( - π (,) 0 ) ( sin ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 = ( if ( 2 ∥ 𝑁 , 0 , - 2 ) / 𝑁 ) ) |
230 |
229
|
negeqd |
⊢ ( 𝜑 → - ∫ ( - π (,) 0 ) ( sin ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 = - ( if ( 2 ∥ 𝑁 , 0 , - 2 ) / 𝑁 ) ) |
231 |
|
0cn |
⊢ 0 ∈ ℂ |
232 |
|
2cn |
⊢ 2 ∈ ℂ |
233 |
232
|
negcli |
⊢ - 2 ∈ ℂ |
234 |
231 233
|
ifcli |
⊢ if ( 2 ∥ 𝑁 , 0 , - 2 ) ∈ ℂ |
235 |
234
|
a1i |
⊢ ( 𝜑 → if ( 2 ∥ 𝑁 , 0 , - 2 ) ∈ ℂ ) |
236 |
235 26 198
|
divnegd |
⊢ ( 𝜑 → - ( if ( 2 ∥ 𝑁 , 0 , - 2 ) / 𝑁 ) = ( - if ( 2 ∥ 𝑁 , 0 , - 2 ) / 𝑁 ) ) |
237 |
|
neg0 |
⊢ - 0 = 0 |
238 |
212
|
negeqd |
⊢ ( 2 ∥ 𝑁 → - if ( 2 ∥ 𝑁 , 0 , - 2 ) = - 0 ) |
239 |
|
iftrue |
⊢ ( 2 ∥ 𝑁 → if ( 2 ∥ 𝑁 , 0 , 2 ) = 0 ) |
240 |
237 238 239
|
3eqtr4a |
⊢ ( 2 ∥ 𝑁 → - if ( 2 ∥ 𝑁 , 0 , - 2 ) = if ( 2 ∥ 𝑁 , 0 , 2 ) ) |
241 |
232
|
negnegi |
⊢ - - 2 = 2 |
242 |
223
|
negeqd |
⊢ ( ¬ 2 ∥ 𝑁 → - if ( 2 ∥ 𝑁 , 0 , - 2 ) = - - 2 ) |
243 |
|
iffalse |
⊢ ( ¬ 2 ∥ 𝑁 → if ( 2 ∥ 𝑁 , 0 , 2 ) = 2 ) |
244 |
241 242 243
|
3eqtr4a |
⊢ ( ¬ 2 ∥ 𝑁 → - if ( 2 ∥ 𝑁 , 0 , - 2 ) = if ( 2 ∥ 𝑁 , 0 , 2 ) ) |
245 |
240 244
|
pm2.61i |
⊢ - if ( 2 ∥ 𝑁 , 0 , - 2 ) = if ( 2 ∥ 𝑁 , 0 , 2 ) |
246 |
245
|
oveq1i |
⊢ ( - if ( 2 ∥ 𝑁 , 0 , - 2 ) / 𝑁 ) = ( if ( 2 ∥ 𝑁 , 0 , 2 ) / 𝑁 ) |
247 |
246
|
a1i |
⊢ ( 𝜑 → ( - if ( 2 ∥ 𝑁 , 0 , - 2 ) / 𝑁 ) = ( if ( 2 ∥ 𝑁 , 0 , 2 ) / 𝑁 ) ) |
248 |
230 236 247
|
3eqtrd |
⊢ ( 𝜑 → - ∫ ( - π (,) 0 ) ( sin ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 = ( if ( 2 ∥ 𝑁 , 0 , 2 ) / 𝑁 ) ) |
249 |
196 197 248
|
3eqtr2d |
⊢ ( 𝜑 → ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 = ( if ( 2 ∥ 𝑁 , 0 , 2 ) / 𝑁 ) ) |
250 |
133 20 21
|
sylancl |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( 𝐹 ‘ 𝑥 ) = if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ) |
251 |
250 156
|
eqtrd |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( 𝐹 ‘ 𝑥 ) = 1 ) |
252 |
251
|
oveq1d |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) = ( 1 · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ) |
253 |
252
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) = ( 1 · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) ) |
254 |
253 161
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) = ( sin ‘ ( 𝑁 · 𝑥 ) ) ) |
255 |
254
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 0 (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 = ∫ ( 0 (,) π ) ( sin ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 ) |
256 |
12
|
a1i |
⊢ ( 𝜑 → 0 ≤ π ) |
257 |
26 198 113 7 256
|
itgsincmulx |
⊢ ( 𝜑 → ∫ ( 0 (,) π ) ( sin ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 = ( ( ( cos ‘ ( 𝑁 · 0 ) ) − ( cos ‘ ( 𝑁 · π ) ) ) / 𝑁 ) ) |
258 |
|
coskpi2 |
⊢ ( 𝑁 ∈ ℤ → ( cos ‘ ( 𝑁 · π ) ) = if ( 2 ∥ 𝑁 , 1 , - 1 ) ) |
259 |
201 258
|
syl |
⊢ ( 𝜑 → ( cos ‘ ( 𝑁 · π ) ) = if ( 2 ∥ 𝑁 , 1 , - 1 ) ) |
260 |
207 259
|
oveq12d |
⊢ ( 𝜑 → ( ( cos ‘ ( 𝑁 · 0 ) ) − ( cos ‘ ( 𝑁 · π ) ) ) = ( 1 − if ( 2 ∥ 𝑁 , 1 , - 1 ) ) ) |
261 |
210
|
oveq2d |
⊢ ( 2 ∥ 𝑁 → ( 1 − if ( 2 ∥ 𝑁 , 1 , - 1 ) ) = ( 1 − 1 ) ) |
262 |
209 261 239
|
3eqtr4a |
⊢ ( 2 ∥ 𝑁 → ( 1 − if ( 2 ∥ 𝑁 , 1 , - 1 ) ) = if ( 2 ∥ 𝑁 , 0 , 2 ) ) |
263 |
214
|
oveq2d |
⊢ ( ¬ 2 ∥ 𝑁 → ( 1 − if ( 2 ∥ 𝑁 , 1 , - 1 ) ) = ( 1 − - 1 ) ) |
264 |
216 216
|
subnegi |
⊢ ( 1 − - 1 ) = ( 1 + 1 ) |
265 |
264
|
a1i |
⊢ ( ¬ 2 ∥ 𝑁 → ( 1 − - 1 ) = ( 1 + 1 ) ) |
266 |
221 243
|
eqtr4id |
⊢ ( ¬ 2 ∥ 𝑁 → ( 1 + 1 ) = if ( 2 ∥ 𝑁 , 0 , 2 ) ) |
267 |
263 265 266
|
3eqtrd |
⊢ ( ¬ 2 ∥ 𝑁 → ( 1 − if ( 2 ∥ 𝑁 , 1 , - 1 ) ) = if ( 2 ∥ 𝑁 , 0 , 2 ) ) |
268 |
262 267
|
pm2.61i |
⊢ ( 1 − if ( 2 ∥ 𝑁 , 1 , - 1 ) ) = if ( 2 ∥ 𝑁 , 0 , 2 ) |
269 |
260 268
|
eqtrdi |
⊢ ( 𝜑 → ( ( cos ‘ ( 𝑁 · 0 ) ) − ( cos ‘ ( 𝑁 · π ) ) ) = if ( 2 ∥ 𝑁 , 0 , 2 ) ) |
270 |
269
|
oveq1d |
⊢ ( 𝜑 → ( ( ( cos ‘ ( 𝑁 · 0 ) ) − ( cos ‘ ( 𝑁 · π ) ) ) / 𝑁 ) = ( if ( 2 ∥ 𝑁 , 0 , 2 ) / 𝑁 ) ) |
271 |
255 257 270
|
3eqtrd |
⊢ ( 𝜑 → ∫ ( 0 (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 = ( if ( 2 ∥ 𝑁 , 0 , 2 ) / 𝑁 ) ) |
272 |
249 271
|
oveq12d |
⊢ ( 𝜑 → ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) = ( ( if ( 2 ∥ 𝑁 , 0 , 2 ) / 𝑁 ) + ( if ( 2 ∥ 𝑁 , 0 , 2 ) / 𝑁 ) ) ) |
273 |
231 232
|
ifcli |
⊢ if ( 2 ∥ 𝑁 , 0 , 2 ) ∈ ℂ |
274 |
273
|
a1i |
⊢ ( 𝜑 → if ( 2 ∥ 𝑁 , 0 , 2 ) ∈ ℂ ) |
275 |
274 274 26 198
|
divdird |
⊢ ( 𝜑 → ( ( if ( 2 ∥ 𝑁 , 0 , 2 ) + if ( 2 ∥ 𝑁 , 0 , 2 ) ) / 𝑁 ) = ( ( if ( 2 ∥ 𝑁 , 0 , 2 ) / 𝑁 ) + ( if ( 2 ∥ 𝑁 , 0 , 2 ) / 𝑁 ) ) ) |
276 |
239 239
|
oveq12d |
⊢ ( 2 ∥ 𝑁 → ( if ( 2 ∥ 𝑁 , 0 , 2 ) + if ( 2 ∥ 𝑁 , 0 , 2 ) ) = ( 0 + 0 ) ) |
277 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
278 |
276 277
|
eqtrdi |
⊢ ( 2 ∥ 𝑁 → ( if ( 2 ∥ 𝑁 , 0 , 2 ) + if ( 2 ∥ 𝑁 , 0 , 2 ) ) = 0 ) |
279 |
278
|
oveq1d |
⊢ ( 2 ∥ 𝑁 → ( ( if ( 2 ∥ 𝑁 , 0 , 2 ) + if ( 2 ∥ 𝑁 , 0 , 2 ) ) / 𝑁 ) = ( 0 / 𝑁 ) ) |
280 |
279
|
adantl |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( ( if ( 2 ∥ 𝑁 , 0 , 2 ) + if ( 2 ∥ 𝑁 , 0 , 2 ) ) / 𝑁 ) = ( 0 / 𝑁 ) ) |
281 |
26 198
|
div0d |
⊢ ( 𝜑 → ( 0 / 𝑁 ) = 0 ) |
282 |
281
|
adantr |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( 0 / 𝑁 ) = 0 ) |
283 |
|
iftrue |
⊢ ( 2 ∥ 𝑁 → if ( 2 ∥ 𝑁 , 0 , ( 4 / 𝑁 ) ) = 0 ) |
284 |
283
|
eqcomd |
⊢ ( 2 ∥ 𝑁 → 0 = if ( 2 ∥ 𝑁 , 0 , ( 4 / 𝑁 ) ) ) |
285 |
284
|
adantl |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → 0 = if ( 2 ∥ 𝑁 , 0 , ( 4 / 𝑁 ) ) ) |
286 |
280 282 285
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( ( if ( 2 ∥ 𝑁 , 0 , 2 ) + if ( 2 ∥ 𝑁 , 0 , 2 ) ) / 𝑁 ) = if ( 2 ∥ 𝑁 , 0 , ( 4 / 𝑁 ) ) ) |
287 |
243 243
|
oveq12d |
⊢ ( ¬ 2 ∥ 𝑁 → ( if ( 2 ∥ 𝑁 , 0 , 2 ) + if ( 2 ∥ 𝑁 , 0 , 2 ) ) = ( 2 + 2 ) ) |
288 |
|
2p2e4 |
⊢ ( 2 + 2 ) = 4 |
289 |
287 288
|
eqtrdi |
⊢ ( ¬ 2 ∥ 𝑁 → ( if ( 2 ∥ 𝑁 , 0 , 2 ) + if ( 2 ∥ 𝑁 , 0 , 2 ) ) = 4 ) |
290 |
289
|
oveq1d |
⊢ ( ¬ 2 ∥ 𝑁 → ( ( if ( 2 ∥ 𝑁 , 0 , 2 ) + if ( 2 ∥ 𝑁 , 0 , 2 ) ) / 𝑁 ) = ( 4 / 𝑁 ) ) |
291 |
|
iffalse |
⊢ ( ¬ 2 ∥ 𝑁 → if ( 2 ∥ 𝑁 , 0 , ( 4 / 𝑁 ) ) = ( 4 / 𝑁 ) ) |
292 |
290 291
|
eqtr4d |
⊢ ( ¬ 2 ∥ 𝑁 → ( ( if ( 2 ∥ 𝑁 , 0 , 2 ) + if ( 2 ∥ 𝑁 , 0 , 2 ) ) / 𝑁 ) = if ( 2 ∥ 𝑁 , 0 , ( 4 / 𝑁 ) ) ) |
293 |
292
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑁 ) → ( ( if ( 2 ∥ 𝑁 , 0 , 2 ) + if ( 2 ∥ 𝑁 , 0 , 2 ) ) / 𝑁 ) = if ( 2 ∥ 𝑁 , 0 , ( 4 / 𝑁 ) ) ) |
294 |
286 293
|
pm2.61dan |
⊢ ( 𝜑 → ( ( if ( 2 ∥ 𝑁 , 0 , 2 ) + if ( 2 ∥ 𝑁 , 0 , 2 ) ) / 𝑁 ) = if ( 2 ∥ 𝑁 , 0 , ( 4 / 𝑁 ) ) ) |
295 |
272 275 294
|
3eqtr2d |
⊢ ( 𝜑 → ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) = if ( 2 ∥ 𝑁 , 0 , ( 4 / 𝑁 ) ) ) |
296 |
295
|
oveq1d |
⊢ ( 𝜑 → ( ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) / π ) = ( if ( 2 ∥ 𝑁 , 0 , ( 4 / 𝑁 ) ) / π ) ) |
297 |
283
|
oveq1d |
⊢ ( 2 ∥ 𝑁 → ( if ( 2 ∥ 𝑁 , 0 , ( 4 / 𝑁 ) ) / π ) = ( 0 / π ) ) |
298 |
297
|
adantl |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( if ( 2 ∥ 𝑁 , 0 , ( 4 / 𝑁 ) ) / π ) = ( 0 / π ) ) |
299 |
8 11
|
gtneii |
⊢ π ≠ 0 |
300 |
42 299
|
div0i |
⊢ ( 0 / π ) = 0 |
301 |
300
|
a1i |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( 0 / π ) = 0 ) |
302 |
|
iftrue |
⊢ ( 2 ∥ 𝑁 → if ( 2 ∥ 𝑁 , 0 , ( 4 / ( 𝑁 · π ) ) ) = 0 ) |
303 |
302
|
eqcomd |
⊢ ( 2 ∥ 𝑁 → 0 = if ( 2 ∥ 𝑁 , 0 , ( 4 / ( 𝑁 · π ) ) ) ) |
304 |
303
|
adantl |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → 0 = if ( 2 ∥ 𝑁 , 0 , ( 4 / ( 𝑁 · π ) ) ) ) |
305 |
298 301 304
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 2 ∥ 𝑁 ) → ( if ( 2 ∥ 𝑁 , 0 , ( 4 / 𝑁 ) ) / π ) = if ( 2 ∥ 𝑁 , 0 , ( 4 / ( 𝑁 · π ) ) ) ) |
306 |
291
|
oveq1d |
⊢ ( ¬ 2 ∥ 𝑁 → ( if ( 2 ∥ 𝑁 , 0 , ( 4 / 𝑁 ) ) / π ) = ( ( 4 / 𝑁 ) / π ) ) |
307 |
306
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑁 ) → ( if ( 2 ∥ 𝑁 , 0 , ( 4 / 𝑁 ) ) / π ) = ( ( 4 / 𝑁 ) / π ) ) |
308 |
|
4cn |
⊢ 4 ∈ ℂ |
309 |
308
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℂ ) |
310 |
42
|
a1i |
⊢ ( 𝜑 → π ∈ ℂ ) |
311 |
299
|
a1i |
⊢ ( 𝜑 → π ≠ 0 ) |
312 |
309 26 310 198 311
|
divdiv1d |
⊢ ( 𝜑 → ( ( 4 / 𝑁 ) / π ) = ( 4 / ( 𝑁 · π ) ) ) |
313 |
312
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑁 ) → ( ( 4 / 𝑁 ) / π ) = ( 4 / ( 𝑁 · π ) ) ) |
314 |
|
iffalse |
⊢ ( ¬ 2 ∥ 𝑁 → if ( 2 ∥ 𝑁 , 0 , ( 4 / ( 𝑁 · π ) ) ) = ( 4 / ( 𝑁 · π ) ) ) |
315 |
314
|
eqcomd |
⊢ ( ¬ 2 ∥ 𝑁 → ( 4 / ( 𝑁 · π ) ) = if ( 2 ∥ 𝑁 , 0 , ( 4 / ( 𝑁 · π ) ) ) ) |
316 |
315
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑁 ) → ( 4 / ( 𝑁 · π ) ) = if ( 2 ∥ 𝑁 , 0 , ( 4 / ( 𝑁 · π ) ) ) ) |
317 |
307 313 316
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 2 ∥ 𝑁 ) → ( if ( 2 ∥ 𝑁 , 0 , ( 4 / 𝑁 ) ) / π ) = if ( 2 ∥ 𝑁 , 0 , ( 4 / ( 𝑁 · π ) ) ) ) |
318 |
305 317
|
pm2.61dan |
⊢ ( 𝜑 → ( if ( 2 ∥ 𝑁 , 0 , ( 4 / 𝑁 ) ) / π ) = if ( 2 ∥ 𝑁 , 0 , ( 4 / ( 𝑁 · π ) ) ) ) |
319 |
186 296 318
|
3eqtrd |
⊢ ( 𝜑 → ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( sin ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 / π ) = if ( 2 ∥ 𝑁 , 0 , ( 4 / ( 𝑁 · π ) ) ) ) |