Metamath Proof Explorer


Theorem sqxpexg

Description: The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020)

Ref Expression
Assertion sqxpexg ( 𝐴𝑉 → ( 𝐴 × 𝐴 ) ∈ V )

Proof

Step Hyp Ref Expression
1 xpexg ( ( 𝐴𝑉𝐴𝑉 ) → ( 𝐴 × 𝐴 ) ∈ V )
2 1 anidms ( 𝐴𝑉 → ( 𝐴 × 𝐴 ) ∈ V )