Step |
Hyp |
Ref |
Expression |
1 |
|
sraassa.a |
⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) |
2 |
1
|
a1i |
⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
4 |
3
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
6 |
2 5
|
srabase |
⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
7 |
2 5
|
srasca |
⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
8 |
|
eqid |
⊢ ( 𝑊 ↾s 𝑆 ) = ( 𝑊 ↾s 𝑆 ) |
9 |
8
|
subrgbas |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 = ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑆 = ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
11 |
2 5
|
sravsca |
⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐴 ) ) |
12 |
2 5
|
sramulr |
⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( .r ‘ 𝑊 ) = ( .r ‘ 𝐴 ) ) |
13 |
1
|
sralmod |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 ∈ LMod ) |
14 |
13
|
adantl |
⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ LMod ) |
15 |
|
crngring |
⊢ ( 𝑊 ∈ CRing → 𝑊 ∈ Ring ) |
16 |
15
|
adantr |
⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑊 ∈ Ring ) |
17 |
|
eqidd |
⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) |
18 |
2 5
|
sraaddg |
⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( +g ‘ 𝑊 ) = ( +g ‘ 𝐴 ) ) |
19 |
18
|
oveqdr |
⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ) |
20 |
12
|
oveqdr |
⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐴 ) 𝑦 ) ) |
21 |
17 6 19 20
|
ringpropd |
⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑊 ∈ Ring ↔ 𝐴 ∈ Ring ) ) |
22 |
16 21
|
mpbid |
⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ Ring ) |
23 |
8
|
subrgcrng |
⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑊 ↾s 𝑆 ) ∈ CRing ) |
24 |
16
|
adantr |
⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ Ring ) |
25 |
5
|
adantr |
⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
26 |
|
simpr1 |
⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ 𝑆 ) |
27 |
25 26
|
sseldd |
⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
28 |
|
simpr2 |
⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
29 |
|
simpr3 |
⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
30 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
31 |
3 30
|
ringass |
⊢ ( ( 𝑊 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
32 |
24 27 28 29 31
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
33 |
|
eqid |
⊢ ( mulGrp ‘ 𝑊 ) = ( mulGrp ‘ 𝑊 ) |
34 |
33
|
crngmgp |
⊢ ( 𝑊 ∈ CRing → ( mulGrp ‘ 𝑊 ) ∈ CMnd ) |
35 |
34
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( mulGrp ‘ 𝑊 ) ∈ CMnd ) |
36 |
33 3
|
mgpbas |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( mulGrp ‘ 𝑊 ) ) |
37 |
33 30
|
mgpplusg |
⊢ ( .r ‘ 𝑊 ) = ( +g ‘ ( mulGrp ‘ 𝑊 ) ) |
38 |
36 37
|
cmn12 |
⊢ ( ( ( mulGrp ‘ 𝑊 ) ∈ CMnd ∧ ( 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
39 |
35 28 27 29 38
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
40 |
6 7 10 11 12 14 22 23 32 39
|
isassad |
⊢ ( ( 𝑊 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ AssAlg ) |