| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sraassab.a | ⊢ 𝐴  =  ( ( subringAlg  ‘ 𝑊 ) ‘ 𝑆 ) | 
						
							| 2 |  | sraassab.z | ⊢ 𝑍  =  ( Cntr ‘ ( mulGrp ‘ 𝑊 ) ) | 
						
							| 3 |  | sraassab.w | ⊢ ( 𝜑  →  𝑊  ∈  Ring ) | 
						
							| 4 |  | sraassab.s | ⊢ ( 𝜑  →  𝑆  ∈  ( SubRing ‘ 𝑊 ) ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 6 | 5 | subrgss | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  →  𝑆  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 7 | 4 6 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  →  𝑆  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 9 | 8 | sselda | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 10 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  𝐴  ∈  AssAlg ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑊  ↾s  𝑆 )  =  ( 𝑊  ↾s  𝑆 ) | 
						
							| 12 | 11 | subrgbas | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  →  𝑆  =  ( Base ‘ ( 𝑊  ↾s  𝑆 ) ) ) | 
						
							| 13 | 4 12 | syl | ⊢ ( 𝜑  →  𝑆  =  ( Base ‘ ( 𝑊  ↾s  𝑆 ) ) ) | 
						
							| 14 | 1 | a1i | ⊢ ( 𝜑  →  𝐴  =  ( ( subringAlg  ‘ 𝑊 ) ‘ 𝑆 ) ) | 
						
							| 15 | 14 7 | srasca | ⊢ ( 𝜑  →  ( 𝑊  ↾s  𝑆 )  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ ( 𝑊  ↾s  𝑆 ) )  =  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 17 | 13 16 | eqtrd | ⊢ ( 𝜑  →  𝑆  =  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 18 | 17 | eqimssd | ⊢ ( 𝜑  →  𝑆  ⊆  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 19 | 18 | sselda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 20 | 19 | ad4ant13 | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  𝑦  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) | 
						
							| 21 | 14 7 | srabase | ⊢ ( 𝜑  →  ( Base ‘ 𝑊 )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 22 | 21 | eqimssd | ⊢ ( 𝜑  →  ( Base ‘ 𝑊 )  ⊆  ( Base ‘ 𝐴 ) ) | 
						
							| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  →  ( Base ‘ 𝑊 )  ⊆  ( Base ‘ 𝐴 ) ) | 
						
							| 24 | 23 | sselda | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  𝑥  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 25 |  | eqid | ⊢ ( 1r ‘ 𝑊 )  =  ( 1r ‘ 𝑊 ) | 
						
							| 26 | 5 25 | ringidcl | ⊢ ( 𝑊  ∈  Ring  →  ( 1r ‘ 𝑊 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 27 | 3 26 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑊 )  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 28 | 27 21 | eleqtrd | ⊢ ( 𝜑  →  ( 1r ‘ 𝑊 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 29 | 28 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 1r ‘ 𝑊 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 30 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 31 |  | eqid | ⊢ ( Scalar ‘ 𝐴 )  =  ( Scalar ‘ 𝐴 ) | 
						
							| 32 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) )  =  ( Base ‘ ( Scalar ‘ 𝐴 ) ) | 
						
							| 33 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐴 )  =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 34 |  | eqid | ⊢ ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐴 ) | 
						
							| 35 | 30 31 32 33 34 | assaassr | ⊢ ( ( 𝐴  ∈  AssAlg  ∧  ( 𝑦  ∈  ( Base ‘ ( Scalar ‘ 𝐴 ) )  ∧  𝑥  ∈  ( Base ‘ 𝐴 )  ∧  ( 1r ‘ 𝑊 )  ∈  ( Base ‘ 𝐴 ) ) )  →  ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) )  =  ( 𝑦 (  ·𝑠  ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) ) | 
						
							| 36 | 10 20 24 29 35 | syl13anc | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) )  =  ( 𝑦 (  ·𝑠  ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) ) | 
						
							| 37 | 14 7 | sramulr | ⊢ ( 𝜑  →  ( .r ‘ 𝑊 )  =  ( .r ‘ 𝐴 ) ) | 
						
							| 38 | 37 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( .r ‘ 𝑊 )  =  ( .r ‘ 𝐴 ) ) | 
						
							| 39 | 38 | oveqd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) )  =  ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) ) | 
						
							| 40 | 14 7 | sravsca | ⊢ ( 𝜑  →  ( .r ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝐴 ) ) | 
						
							| 41 | 40 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( .r ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝐴 ) ) | 
						
							| 42 | 41 | oveqd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑦 ( .r ‘ 𝑊 ) ( 1r ‘ 𝑊 ) )  =  ( 𝑦 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) | 
						
							| 43 |  | eqid | ⊢ ( .r ‘ 𝑊 )  =  ( .r ‘ 𝑊 ) | 
						
							| 44 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  𝑊  ∈  Ring ) | 
						
							| 45 | 9 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  𝑦  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 46 | 5 43 25 44 45 | ringridmd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑦 ( .r ‘ 𝑊 ) ( 1r ‘ 𝑊 ) )  =  𝑦 ) | 
						
							| 47 | 42 46 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑦 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝑊 ) )  =  𝑦 ) | 
						
							| 48 | 47 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) )  =  ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 49 | 39 48 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑥 ( .r ‘ 𝐴 ) ( 𝑦 (  ·𝑠  ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) )  =  ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 50 | 41 | oveqd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) )  =  ( 𝑦 (  ·𝑠  ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) ) | 
						
							| 51 | 38 | oveqd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑥 ( .r ‘ 𝑊 ) ( 1r ‘ 𝑊 ) )  =  ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) ) | 
						
							| 52 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  𝑥  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 53 | 5 43 25 44 52 | ringridmd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑥 ( .r ‘ 𝑊 ) ( 1r ‘ 𝑊 ) )  =  𝑥 ) | 
						
							| 54 | 51 53 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) )  =  𝑥 ) | 
						
							| 55 | 54 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) )  =  ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 56 | 50 55 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑦 (  ·𝑠  ‘ 𝐴 ) ( 𝑥 ( .r ‘ 𝐴 ) ( 1r ‘ 𝑊 ) ) )  =  ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 57 | 36 49 56 | 3eqtr3rd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 )  =  ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 58 | 57 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  →  ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 )  =  ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) | 
						
							| 59 |  | eqid | ⊢ ( mulGrp ‘ 𝑊 )  =  ( mulGrp ‘ 𝑊 ) | 
						
							| 60 | 59 5 | mgpbas | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ ( mulGrp ‘ 𝑊 ) ) | 
						
							| 61 | 59 43 | mgpplusg | ⊢ ( .r ‘ 𝑊 )  =  ( +g ‘ ( mulGrp ‘ 𝑊 ) ) | 
						
							| 62 | 60 61 2 | elcntr | ⊢ ( 𝑦  ∈  𝑍  ↔  ( 𝑦  ∈  ( Base ‘ 𝑊 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 )  =  ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) | 
						
							| 63 | 9 58 62 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  ∧  𝑦  ∈  𝑆 )  →  𝑦  ∈  𝑍 ) | 
						
							| 64 | 63 | ex | ⊢ ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  →  ( 𝑦  ∈  𝑆  →  𝑦  ∈  𝑍 ) ) | 
						
							| 65 | 64 | ssrdv | ⊢ ( ( 𝜑  ∧  𝐴  ∈  AssAlg )  →  𝑆  ⊆  𝑍 ) | 
						
							| 66 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  →  ( Base ‘ 𝑊 )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 67 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  →  ( 𝑊  ↾s  𝑆 )  =  ( Scalar ‘ 𝐴 ) ) | 
						
							| 68 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  →  𝑆  =  ( Base ‘ ( 𝑊  ↾s  𝑆 ) ) ) | 
						
							| 69 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  →  ( .r ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝐴 ) ) | 
						
							| 70 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  →  ( .r ‘ 𝑊 )  =  ( .r ‘ 𝐴 ) ) | 
						
							| 71 | 1 | sralmod | ⊢ ( 𝑆  ∈  ( SubRing ‘ 𝑊 )  →  𝐴  ∈  LMod ) | 
						
							| 72 | 4 71 | syl | ⊢ ( 𝜑  →  𝐴  ∈  LMod ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  →  𝐴  ∈  LMod ) | 
						
							| 74 | 1 5 | sraring | ⊢ ( ( 𝑊  ∈  Ring  ∧  𝑆  ⊆  ( Base ‘ 𝑊 ) )  →  𝐴  ∈  Ring ) | 
						
							| 75 | 3 7 74 | syl2anc | ⊢ ( 𝜑  →  𝐴  ∈  Ring ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  →  𝐴  ∈  Ring ) | 
						
							| 77 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  ( Base ‘ 𝑊 )  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) ) )  →  𝑊  ∈  Ring ) | 
						
							| 78 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  →  𝑆  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 79 | 78 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 80 | 79 | 3ad2antr1 | ⊢ ( ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  ( Base ‘ 𝑊 )  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) ) )  →  𝑥  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 81 |  | simpr2 | ⊢ ( ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  ( Base ‘ 𝑊 )  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) ) )  →  𝑦  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 82 |  | simpr3 | ⊢ ( ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  ( Base ‘ 𝑊 )  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) ) )  →  𝑧  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 83 | 5 43 77 80 81 82 | ringassd | ⊢ ( ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  ( Base ‘ 𝑊 )  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 )  =  ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 84 |  | ssel2 | ⊢ ( ( 𝑆  ⊆  𝑍  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  𝑍 ) | 
						
							| 85 | 84 | ad2ant2lr | ⊢ ( ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  𝑥  ∈  𝑍 ) | 
						
							| 86 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  𝑦  ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 87 | 60 61 2 | cntri | ⊢ ( ( 𝑥  ∈  𝑍  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 88 | 85 86 87 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  ( Base ‘ 𝑊 ) ) )  →  ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 89 | 88 | 3adantr3 | ⊢ ( ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  ( Base ‘ 𝑊 )  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) ) )  →  ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 )  =  ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ) | 
						
							| 90 | 89 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  ( Base ‘ 𝑊 )  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 )  =  ( ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 91 | 5 43 77 81 80 82 | ringassd | ⊢ ( ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  ( Base ‘ 𝑊 )  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) ) )  →  ( ( 𝑦 ( .r ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑧 )  =  ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 92 | 90 83 91 | 3eqtr3rd | ⊢ ( ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  ( Base ‘ 𝑊 )  ∧  𝑧  ∈  ( Base ‘ 𝑊 ) ) )  →  ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) )  =  ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 93 | 66 67 68 69 70 73 76 83 92 | isassad | ⊢ ( ( 𝜑  ∧  𝑆  ⊆  𝑍 )  →  𝐴  ∈  AssAlg ) | 
						
							| 94 | 65 93 | impbida | ⊢ ( 𝜑  →  ( 𝐴  ∈  AssAlg  ↔  𝑆  ⊆  𝑍 ) ) |