Description: Base set of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 29-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srapart.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
| srapart.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | ||
| Assertion | srabase | ⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srapart.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
| 2 | srapart.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | |
| 3 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 4 | scandxnbasendx | ⊢ ( Scalar ‘ ndx ) ≠ ( Base ‘ ndx ) | |
| 5 | vscandxnbasendx | ⊢ ( ·𝑠 ‘ ndx ) ≠ ( Base ‘ ndx ) | |
| 6 | ipndxnbasendx | ⊢ ( ·𝑖 ‘ ndx ) ≠ ( Base ‘ ndx ) | |
| 7 | 1 2 3 4 5 6 | sralem | ⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |