Database
BASIC ALGEBRAIC STRUCTURES
Ideals
The subring algebra; ideals
srabase
Metamath Proof Explorer
Description: Base set of a subring algebra. (Contributed by Stefan O'Rear , 27-Nov-2014) (Revised by Mario Carneiro , 4-Oct-2015) (Revised by Thierry Arnoux , 16-Jun-2019)
Ref
Expression
Hypotheses
srapart.a
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
srapart.s
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) )
Assertion
srabase
⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) )
Proof
Step
Hyp
Ref
Expression
1
srapart.a
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
2
srapart.s
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) )
3
df-base
⊢ Base = Slot 1
4
1nn
⊢ 1 ∈ ℕ
5
1lt5
⊢ 1 < 5
6
5
orci
⊢ ( 1 < 5 ∨ 8 < 1 )
7
1 2 3 4 6
sralem
⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) )