Step |
Hyp |
Ref |
Expression |
1 |
|
srabn.a |
⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) |
2 |
|
srabn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
3 |
|
simp2 |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑊 ∈ CMetSp ) |
4 |
|
eqidd |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) |
5 |
1
|
a1i |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
7 |
6
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
8 |
7
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
9 |
5 8
|
srabase |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
10 |
5 8
|
srads |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( dist ‘ 𝑊 ) = ( dist ‘ 𝐴 ) ) |
11 |
10
|
reseq1d |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) = ( ( dist ‘ 𝐴 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) |
12 |
5 8
|
sratopn |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝐴 ) ) |
13 |
4 9 11 12
|
cmspropd |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑊 ∈ CMetSp ↔ 𝐴 ∈ CMetSp ) ) |
14 |
3 13
|
mpbid |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ CMetSp ) |
15 |
|
eqid |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) |
16 |
15
|
isbn |
⊢ ( 𝐴 ∈ Ban ↔ ( 𝐴 ∈ NrmVec ∧ 𝐴 ∈ CMetSp ∧ ( Scalar ‘ 𝐴 ) ∈ CMetSp ) ) |
17 |
|
3anrot |
⊢ ( ( 𝐴 ∈ NrmVec ∧ 𝐴 ∈ CMetSp ∧ ( Scalar ‘ 𝐴 ) ∈ CMetSp ) ↔ ( 𝐴 ∈ CMetSp ∧ ( Scalar ‘ 𝐴 ) ∈ CMetSp ∧ 𝐴 ∈ NrmVec ) ) |
18 |
|
3anass |
⊢ ( ( 𝐴 ∈ CMetSp ∧ ( Scalar ‘ 𝐴 ) ∈ CMetSp ∧ 𝐴 ∈ NrmVec ) ↔ ( 𝐴 ∈ CMetSp ∧ ( ( Scalar ‘ 𝐴 ) ∈ CMetSp ∧ 𝐴 ∈ NrmVec ) ) ) |
19 |
16 17 18
|
3bitri |
⊢ ( 𝐴 ∈ Ban ↔ ( 𝐴 ∈ CMetSp ∧ ( ( Scalar ‘ 𝐴 ) ∈ CMetSp ∧ 𝐴 ∈ NrmVec ) ) ) |
20 |
19
|
baib |
⊢ ( 𝐴 ∈ CMetSp → ( 𝐴 ∈ Ban ↔ ( ( Scalar ‘ 𝐴 ) ∈ CMetSp ∧ 𝐴 ∈ NrmVec ) ) ) |
21 |
14 20
|
syl |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝐴 ∈ Ban ↔ ( ( Scalar ‘ 𝐴 ) ∈ CMetSp ∧ 𝐴 ∈ NrmVec ) ) ) |
22 |
5 8
|
srasca |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
23 |
22
|
eleq1d |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( 𝑊 ↾s 𝑆 ) ∈ CMetSp ↔ ( Scalar ‘ 𝐴 ) ∈ CMetSp ) ) |
24 |
|
eqid |
⊢ ( 𝑊 ↾s 𝑆 ) = ( 𝑊 ↾s 𝑆 ) |
25 |
24 6 2
|
cmsss |
⊢ ( ( 𝑊 ∈ CMetSp ∧ 𝑆 ⊆ ( Base ‘ 𝑊 ) ) → ( ( 𝑊 ↾s 𝑆 ) ∈ CMetSp ↔ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ) |
26 |
3 8 25
|
syl2anc |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( 𝑊 ↾s 𝑆 ) ∈ CMetSp ↔ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ) |
27 |
23 26
|
bitr3d |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( Scalar ‘ 𝐴 ) ∈ CMetSp ↔ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) ) |
28 |
1
|
sranlm |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ NrmMod ) |
29 |
28
|
3adant2 |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → 𝐴 ∈ NrmMod ) |
30 |
15
|
isnvc2 |
⊢ ( 𝐴 ∈ NrmVec ↔ ( 𝐴 ∈ NrmMod ∧ ( Scalar ‘ 𝐴 ) ∈ DivRing ) ) |
31 |
30
|
baib |
⊢ ( 𝐴 ∈ NrmMod → ( 𝐴 ∈ NrmVec ↔ ( Scalar ‘ 𝐴 ) ∈ DivRing ) ) |
32 |
29 31
|
syl |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝐴 ∈ NrmVec ↔ ( Scalar ‘ 𝐴 ) ∈ DivRing ) ) |
33 |
22
|
eleq1d |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( 𝑊 ↾s 𝑆 ) ∈ DivRing ↔ ( Scalar ‘ 𝐴 ) ∈ DivRing ) ) |
34 |
32 33
|
bitr4d |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝐴 ∈ NrmVec ↔ ( 𝑊 ↾s 𝑆 ) ∈ DivRing ) ) |
35 |
27 34
|
anbi12d |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( ( Scalar ‘ 𝐴 ) ∈ CMetSp ∧ 𝐴 ∈ NrmVec ) ↔ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑊 ↾s 𝑆 ) ∈ DivRing ) ) ) |
36 |
21 35
|
bitrd |
⊢ ( ( 𝑊 ∈ NrmRing ∧ 𝑊 ∈ CMetSp ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝐴 ∈ Ban ↔ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑊 ↾s 𝑆 ) ∈ DivRing ) ) ) |