| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srapart.a | ⊢ ( 𝜑  →  𝐴  =  ( ( subringAlg  ‘ 𝑊 ) ‘ 𝑆 ) ) | 
						
							| 2 |  | srapart.s | ⊢ ( 𝜑  →  𝑆  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 3 |  | dsid | ⊢ dist  =  Slot  ( dist ‘ ndx ) | 
						
							| 4 |  | slotsdnscsi | ⊢ ( ( dist ‘ ndx )  ≠  ( Scalar ‘ ndx )  ∧  ( dist ‘ ndx )  ≠  (  ·𝑠  ‘ ndx )  ∧  ( dist ‘ ndx )  ≠  ( ·𝑖 ‘ ndx ) ) | 
						
							| 5 | 4 | simp1i | ⊢ ( dist ‘ ndx )  ≠  ( Scalar ‘ ndx ) | 
						
							| 6 | 5 | necomi | ⊢ ( Scalar ‘ ndx )  ≠  ( dist ‘ ndx ) | 
						
							| 7 | 4 | simp2i | ⊢ ( dist ‘ ndx )  ≠  (  ·𝑠  ‘ ndx ) | 
						
							| 8 | 7 | necomi | ⊢ (  ·𝑠  ‘ ndx )  ≠  ( dist ‘ ndx ) | 
						
							| 9 | 4 | simp3i | ⊢ ( dist ‘ ndx )  ≠  ( ·𝑖 ‘ ndx ) | 
						
							| 10 | 9 | necomi | ⊢ ( ·𝑖 ‘ ndx )  ≠  ( dist ‘ ndx ) | 
						
							| 11 | 1 2 3 6 8 10 | sralem | ⊢ ( 𝜑  →  ( dist ‘ 𝑊 )  =  ( dist ‘ 𝐴 ) ) |