Metamath Proof Explorer
Description: Distance function of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019)
|
|
Ref |
Expression |
|
Hypotheses |
srapart.a |
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
|
|
srapart.s |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
|
Assertion |
srads |
⊢ ( 𝜑 → ( dist ‘ 𝑊 ) = ( dist ‘ 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
srapart.a |
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
2 |
|
srapart.s |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
3 |
|
df-ds |
⊢ dist = Slot ; 1 2 |
4 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
5 |
|
2nn |
⊢ 2 ∈ ℕ |
6 |
4 5
|
decnncl |
⊢ ; 1 2 ∈ ℕ |
7 |
|
1nn |
⊢ 1 ∈ ℕ |
8 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
9 |
|
8nn0 |
⊢ 8 ∈ ℕ0 |
10 |
|
8lt10 |
⊢ 8 < ; 1 0 |
11 |
7 8 9 10
|
declti |
⊢ 8 < ; 1 2 |
12 |
11
|
olci |
⊢ ( ; 1 2 < 5 ∨ 8 < ; 1 2 ) |
13 |
1 2 3 6 12
|
sralem |
⊢ ( 𝜑 → ( dist ‘ 𝑊 ) = ( dist ‘ 𝐴 ) ) |