Step |
Hyp |
Ref |
Expression |
1 |
|
srapart.a |
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
2 |
|
srapart.s |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
3 |
|
sralem.1 |
⊢ 𝐸 = Slot 𝑁 |
4 |
|
sralem.2 |
⊢ 𝑁 ∈ ℕ |
5 |
|
sralem.3 |
⊢ ( 𝑁 < 5 ∨ 8 < 𝑁 ) |
6 |
3 4
|
ndxid |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
7 |
4
|
nnrei |
⊢ 𝑁 ∈ ℝ |
8 |
|
5re |
⊢ 5 ∈ ℝ |
9 |
7 8
|
ltnei |
⊢ ( 𝑁 < 5 → 5 ≠ 𝑁 ) |
10 |
9
|
necomd |
⊢ ( 𝑁 < 5 → 𝑁 ≠ 5 ) |
11 |
|
5lt8 |
⊢ 5 < 8 |
12 |
|
8re |
⊢ 8 ∈ ℝ |
13 |
8 12 7
|
lttri |
⊢ ( ( 5 < 8 ∧ 8 < 𝑁 ) → 5 < 𝑁 ) |
14 |
11 13
|
mpan |
⊢ ( 8 < 𝑁 → 5 < 𝑁 ) |
15 |
8 7
|
ltnei |
⊢ ( 5 < 𝑁 → 𝑁 ≠ 5 ) |
16 |
14 15
|
syl |
⊢ ( 8 < 𝑁 → 𝑁 ≠ 5 ) |
17 |
10 16
|
jaoi |
⊢ ( ( 𝑁 < 5 ∨ 8 < 𝑁 ) → 𝑁 ≠ 5 ) |
18 |
5 17
|
ax-mp |
⊢ 𝑁 ≠ 5 |
19 |
3 4
|
ndxarg |
⊢ ( 𝐸 ‘ ndx ) = 𝑁 |
20 |
|
scandx |
⊢ ( Scalar ‘ ndx ) = 5 |
21 |
19 20
|
neeq12i |
⊢ ( ( 𝐸 ‘ ndx ) ≠ ( Scalar ‘ ndx ) ↔ 𝑁 ≠ 5 ) |
22 |
18 21
|
mpbir |
⊢ ( 𝐸 ‘ ndx ) ≠ ( Scalar ‘ ndx ) |
23 |
6 22
|
setsnid |
⊢ ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) ) |
24 |
|
5lt6 |
⊢ 5 < 6 |
25 |
|
6re |
⊢ 6 ∈ ℝ |
26 |
7 8 25
|
lttri |
⊢ ( ( 𝑁 < 5 ∧ 5 < 6 ) → 𝑁 < 6 ) |
27 |
24 26
|
mpan2 |
⊢ ( 𝑁 < 5 → 𝑁 < 6 ) |
28 |
7 25
|
ltnei |
⊢ ( 𝑁 < 6 → 6 ≠ 𝑁 ) |
29 |
27 28
|
syl |
⊢ ( 𝑁 < 5 → 6 ≠ 𝑁 ) |
30 |
29
|
necomd |
⊢ ( 𝑁 < 5 → 𝑁 ≠ 6 ) |
31 |
|
6lt8 |
⊢ 6 < 8 |
32 |
25 12 7
|
lttri |
⊢ ( ( 6 < 8 ∧ 8 < 𝑁 ) → 6 < 𝑁 ) |
33 |
31 32
|
mpan |
⊢ ( 8 < 𝑁 → 6 < 𝑁 ) |
34 |
25 7
|
ltnei |
⊢ ( 6 < 𝑁 → 𝑁 ≠ 6 ) |
35 |
33 34
|
syl |
⊢ ( 8 < 𝑁 → 𝑁 ≠ 6 ) |
36 |
30 35
|
jaoi |
⊢ ( ( 𝑁 < 5 ∨ 8 < 𝑁 ) → 𝑁 ≠ 6 ) |
37 |
5 36
|
ax-mp |
⊢ 𝑁 ≠ 6 |
38 |
|
vscandx |
⊢ ( ·𝑠 ‘ ndx ) = 6 |
39 |
19 38
|
neeq12i |
⊢ ( ( 𝐸 ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ↔ 𝑁 ≠ 6 ) |
40 |
37 39
|
mpbir |
⊢ ( 𝐸 ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
41 |
6 40
|
setsnid |
⊢ ( 𝐸 ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) ) = ( 𝐸 ‘ ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
42 |
7 8 12
|
lttri |
⊢ ( ( 𝑁 < 5 ∧ 5 < 8 ) → 𝑁 < 8 ) |
43 |
11 42
|
mpan2 |
⊢ ( 𝑁 < 5 → 𝑁 < 8 ) |
44 |
7 12
|
ltnei |
⊢ ( 𝑁 < 8 → 8 ≠ 𝑁 ) |
45 |
43 44
|
syl |
⊢ ( 𝑁 < 5 → 8 ≠ 𝑁 ) |
46 |
45
|
necomd |
⊢ ( 𝑁 < 5 → 𝑁 ≠ 8 ) |
47 |
12 7
|
ltnei |
⊢ ( 8 < 𝑁 → 𝑁 ≠ 8 ) |
48 |
46 47
|
jaoi |
⊢ ( ( 𝑁 < 5 ∨ 8 < 𝑁 ) → 𝑁 ≠ 8 ) |
49 |
5 48
|
ax-mp |
⊢ 𝑁 ≠ 8 |
50 |
|
ipndx |
⊢ ( ·𝑖 ‘ ndx ) = 8 |
51 |
19 50
|
neeq12i |
⊢ ( ( 𝐸 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ↔ 𝑁 ≠ 8 ) |
52 |
49 51
|
mpbir |
⊢ ( 𝐸 ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) |
53 |
6 52
|
setsnid |
⊢ ( 𝐸 ‘ ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) = ( 𝐸 ‘ ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
54 |
23 41 53
|
3eqtri |
⊢ ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
55 |
1
|
adantl |
⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
56 |
|
sraval |
⊢ ( ( 𝑊 ∈ V ∧ 𝑆 ⊆ ( Base ‘ 𝑊 ) ) → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
57 |
2 56
|
sylan2 |
⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
58 |
55 57
|
eqtrd |
⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
59 |
58
|
fveq2d |
⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( 𝐸 ‘ 𝐴 ) = ( 𝐸 ‘ ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) ) |
60 |
54 59
|
eqtr4id |
⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ 𝐴 ) ) |
61 |
3
|
str0 |
⊢ ∅ = ( 𝐸 ‘ ∅ ) |
62 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐸 ‘ 𝑊 ) = ∅ ) |
63 |
62
|
adantr |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( 𝐸 ‘ 𝑊 ) = ∅ ) |
64 |
|
fv2prc |
⊢ ( ¬ 𝑊 ∈ V → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ∅ ) |
65 |
1 64
|
sylan9eqr |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ∅ ) |
66 |
65
|
fveq2d |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( 𝐸 ‘ 𝐴 ) = ( 𝐸 ‘ ∅ ) ) |
67 |
61 63 66
|
3eqtr4a |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ 𝐴 ) ) |
68 |
60 67
|
pm2.61ian |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ 𝐴 ) ) |