Step |
Hyp |
Ref |
Expression |
1 |
|
sralmod.a |
⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) |
2 |
1
|
a1i |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
4 |
3
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
5 |
2 4
|
srabase |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
6 |
2 4
|
sraaddg |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( +g ‘ 𝑊 ) = ( +g ‘ 𝐴 ) ) |
7 |
2 4
|
srasca |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
8 |
2 4
|
sravsca |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( .r ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐴 ) ) |
9 |
|
eqid |
⊢ ( 𝑊 ↾s 𝑆 ) = ( 𝑊 ↾s 𝑆 ) |
10 |
9 3
|
ressbas |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
12 |
9 11
|
ressplusg |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( +g ‘ 𝑊 ) = ( +g ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
13 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
14 |
9 13
|
ressmulr |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( .r ‘ 𝑊 ) = ( .r ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
15 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
16 |
9 15
|
subrg1 |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 1r ‘ 𝑊 ) = ( 1r ‘ ( 𝑊 ↾s 𝑆 ) ) ) |
17 |
9
|
subrgring |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 𝑊 ↾s 𝑆 ) ∈ Ring ) |
18 |
|
subrgrcl |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑊 ∈ Ring ) |
19 |
|
ringgrp |
⊢ ( 𝑊 ∈ Ring → 𝑊 ∈ Grp ) |
20 |
18 19
|
syl |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑊 ∈ Grp ) |
21 |
|
eqidd |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) |
22 |
6
|
oveqdr |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐴 ) 𝑦 ) ) |
23 |
21 5 22
|
grppropd |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 𝑊 ∈ Grp ↔ 𝐴 ∈ Grp ) ) |
24 |
20 23
|
mpbid |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 ∈ Grp ) |
25 |
18
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → 𝑊 ∈ Ring ) |
26 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
27 |
26
|
3ad2ant2 |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
28 |
|
simp3 |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
29 |
3 13
|
ringcl |
⊢ ( ( 𝑊 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
30 |
25 27 28 29
|
syl3anc |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
31 |
18
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ Ring ) |
32 |
|
simpr1 |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ) |
33 |
32
|
elin2d |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
34 |
|
simpr2 |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
35 |
|
simpr3 |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
36 |
3 11 13
|
ringdi |
⊢ ( ( 𝑊 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
37 |
31 33 34 35 36
|
syl13anc |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
38 |
18
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ Ring ) |
39 |
|
simpr1 |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ) |
40 |
39
|
elin2d |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
41 |
|
simpr2 |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ) |
42 |
41
|
elin2d |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
43 |
|
simpr3 |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
44 |
3 11 13
|
ringdir |
⊢ ( ( 𝑊 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) ( +g ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
45 |
38 40 42 43 44
|
syl13anc |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑧 ) ( +g ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
46 |
3 13
|
ringass |
⊢ ( ( 𝑊 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
47 |
38 40 42 43 46
|
syl13anc |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( 𝑆 ∩ ( Base ‘ 𝑊 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
48 |
3 13 15
|
ringlidm |
⊢ ( ( 𝑊 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 1r ‘ 𝑊 ) ( .r ‘ 𝑊 ) 𝑥 ) = 𝑥 ) |
49 |
18 48
|
sylan |
⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( 1r ‘ 𝑊 ) ( .r ‘ 𝑊 ) 𝑥 ) = 𝑥 ) |
50 |
5 6 7 8 10 12 14 16 17 24 30 37 45 47 49
|
islmodd |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 ∈ LMod ) |