Metamath Proof Explorer


Theorem sralmod0

Description: The subring module inherits a zero from its ring. (Contributed by Stefan O'Rear, 27-Dec-2014)

Ref Expression
Hypotheses sralmod0.a ( 𝜑𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
sralmod0.z ( 𝜑0 = ( 0g𝑊 ) )
sralmod0.s ( 𝜑𝑆 ⊆ ( Base ‘ 𝑊 ) )
Assertion sralmod0 ( 𝜑0 = ( 0g𝐴 ) )

Proof

Step Hyp Ref Expression
1 sralmod0.a ( 𝜑𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
2 sralmod0.z ( 𝜑0 = ( 0g𝑊 ) )
3 sralmod0.s ( 𝜑𝑆 ⊆ ( Base ‘ 𝑊 ) )
4 eqidd ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) )
5 1 3 srabase ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) )
6 1 3 sraaddg ( 𝜑 → ( +g𝑊 ) = ( +g𝐴 ) )
7 6 oveqdr ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑊 ) ∧ 𝑏 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑎 ( +g𝑊 ) 𝑏 ) = ( 𝑎 ( +g𝐴 ) 𝑏 ) )
8 4 5 7 grpidpropd ( 𝜑 → ( 0g𝑊 ) = ( 0g𝐴 ) )
9 2 8 eqtrd ( 𝜑0 = ( 0g𝐴 ) )