Description: The subring module inherits a zero from its ring. (Contributed by Stefan O'Rear, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sralmod0.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
| sralmod0.z | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑊 ) ) | ||
| sralmod0.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | ||
| Assertion | sralmod0 | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sralmod0.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
| 2 | sralmod0.z | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑊 ) ) | |
| 3 | sralmod0.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | |
| 4 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) | |
| 5 | 1 3 | srabase | ⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
| 6 | 1 3 | sraaddg | ⊢ ( 𝜑 → ( +g ‘ 𝑊 ) = ( +g ‘ 𝐴 ) ) |
| 7 | 6 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑊 ) ∧ 𝑏 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑎 ( +g ‘ 𝑊 ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝐴 ) 𝑏 ) ) |
| 8 | 4 5 7 | grpidpropd | ⊢ ( 𝜑 → ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝐴 ) ) |
| 9 | 2 8 | eqtrd | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐴 ) ) |