Database
BASIC ALGEBRAIC STRUCTURES
Subring algebras and ideals
Subring algebras
sramulr
Metamath Proof Explorer
Description: Multiplicative operation of a subring algebra. (Contributed by Stefan
O'Rear , 27-Nov-2014) (Revised by Mario Carneiro , 4-Oct-2015)
(Revised by Thierry Arnoux , 16-Jun-2019) (Revised by AV , 29-Oct-2024)
Ref
Expression
Hypotheses
srapart.a
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
srapart.s
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) )
Assertion
sramulr
⊢ ( 𝜑 → ( .r ‘ 𝑊 ) = ( .r ‘ 𝐴 ) )
Proof
Step
Hyp
Ref
Expression
1
srapart.a
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
2
srapart.s
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) )
3
mulridx
⊢ .r = Slot ( .r ‘ ndx )
4
scandxnmulrndx
⊢ ( Scalar ‘ ndx ) ≠ ( .r ‘ ndx )
5
vscandxnmulrndx
⊢ ( · 𝑠 ‘ ndx ) ≠ ( .r ‘ ndx )
6
ipndxnmulrndx
⊢ ( · 𝑖 ‘ ndx ) ≠ ( .r ‘ ndx )
7
1 2 3 4 5 6
sralem
⊢ ( 𝜑 → ( .r ‘ 𝑊 ) = ( .r ‘ 𝐴 ) )