Step |
Hyp |
Ref |
Expression |
1 |
|
srapart.a |
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
2 |
|
srapart.s |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
3 |
|
scaid |
⊢ Scalar = Slot ( Scalar ‘ ndx ) |
4 |
|
5re |
⊢ 5 ∈ ℝ |
5 |
|
5lt6 |
⊢ 5 < 6 |
6 |
4 5
|
ltneii |
⊢ 5 ≠ 6 |
7 |
|
scandx |
⊢ ( Scalar ‘ ndx ) = 5 |
8 |
|
vscandx |
⊢ ( ·𝑠 ‘ ndx ) = 6 |
9 |
7 8
|
neeq12i |
⊢ ( ( Scalar ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ↔ 5 ≠ 6 ) |
10 |
6 9
|
mpbir |
⊢ ( Scalar ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
11 |
3 10
|
setsnid |
⊢ ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) ) = ( Scalar ‘ ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
12 |
|
5lt8 |
⊢ 5 < 8 |
13 |
4 12
|
ltneii |
⊢ 5 ≠ 8 |
14 |
|
ipndx |
⊢ ( ·𝑖 ‘ ndx ) = 8 |
15 |
7 14
|
neeq12i |
⊢ ( ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) ↔ 5 ≠ 8 ) |
16 |
13 15
|
mpbir |
⊢ ( Scalar ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) |
17 |
3 16
|
setsnid |
⊢ ( Scalar ‘ ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) = ( Scalar ‘ ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
18 |
11 17
|
eqtri |
⊢ ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) ) = ( Scalar ‘ ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
19 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑊 ↾s 𝑆 ) ∈ V ) |
20 |
3
|
setsid |
⊢ ( ( 𝑊 ∈ V ∧ ( 𝑊 ↾s 𝑆 ) ∈ V ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) ) ) |
21 |
19 20
|
sylan2 |
⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) ) ) |
22 |
1
|
adantl |
⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
23 |
|
sraval |
⊢ ( ( 𝑊 ∈ V ∧ 𝑆 ⊆ ( Base ‘ 𝑊 ) ) → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
24 |
2 23
|
sylan2 |
⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
25 |
22 24
|
eqtrd |
⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) |
26 |
25
|
fveq2d |
⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ ( ( ( 𝑊 sSet 〈 ( Scalar ‘ ndx ) , ( 𝑊 ↾s 𝑆 ) 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) sSet 〈 ( ·𝑖 ‘ ndx ) , ( .r ‘ 𝑊 ) 〉 ) ) ) |
27 |
18 21 26
|
3eqtr4a |
⊢ ( ( 𝑊 ∈ V ∧ 𝜑 ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
28 |
3
|
str0 |
⊢ ∅ = ( Scalar ‘ ∅ ) |
29 |
|
reldmress |
⊢ Rel dom ↾s |
30 |
29
|
ovprc1 |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾s 𝑆 ) = ∅ ) |
31 |
30
|
adantr |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( 𝑊 ↾s 𝑆 ) = ∅ ) |
32 |
|
fv2prc |
⊢ ( ¬ 𝑊 ∈ V → ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) = ∅ ) |
33 |
1 32
|
sylan9eqr |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → 𝐴 = ∅ ) |
34 |
33
|
fveq2d |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ ∅ ) ) |
35 |
28 31 34
|
3eqtr4a |
⊢ ( ( ¬ 𝑊 ∈ V ∧ 𝜑 ) → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |
36 |
27 35
|
pm2.61ian |
⊢ ( 𝜑 → ( 𝑊 ↾s 𝑆 ) = ( Scalar ‘ 𝐴 ) ) |