Metamath Proof Explorer


Theorem sratopn

Description: Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses srapart.a ( 𝜑𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
srapart.s ( 𝜑𝑆 ⊆ ( Base ‘ 𝑊 ) )
Assertion sratopn ( 𝜑 → ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 srapart.a ( 𝜑𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
2 srapart.s ( 𝜑𝑆 ⊆ ( Base ‘ 𝑊 ) )
3 1 2 srabase ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) )
4 1 2 sratset ( 𝜑 → ( TopSet ‘ 𝑊 ) = ( TopSet ‘ 𝐴 ) )
5 3 4 topnpropd ( 𝜑 → ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝐴 ) )