Description: Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | srapart.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
srapart.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | ||
Assertion | sratopn | ⊢ ( 𝜑 → ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srapart.a | ⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) | |
2 | srapart.s | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) | |
3 | 1 2 | srabase | ⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
4 | 1 2 | sratset | ⊢ ( 𝜑 → ( TopSet ‘ 𝑊 ) = ( TopSet ‘ 𝐴 ) ) |
5 | 3 4 | topnpropd | ⊢ ( 𝜑 → ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝐴 ) ) |