Metamath Proof Explorer
Description: Topology component of a subring algebra. (Contributed by Mario
Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019)
|
|
Ref |
Expression |
|
Hypotheses |
srapart.a |
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
|
|
srapart.s |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
|
Assertion |
sratset |
⊢ ( 𝜑 → ( TopSet ‘ 𝑊 ) = ( TopSet ‘ 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
srapart.a |
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
2 |
|
srapart.s |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
3 |
|
df-tset |
⊢ TopSet = Slot 9 |
4 |
|
9nn |
⊢ 9 ∈ ℕ |
5 |
|
8lt9 |
⊢ 8 < 9 |
6 |
5
|
olci |
⊢ ( 9 < 5 ∨ 8 < 9 ) |
7 |
1 2 3 4 6
|
sralem |
⊢ ( 𝜑 → ( TopSet ‘ 𝑊 ) = ( TopSet ‘ 𝐴 ) ) |