Metamath Proof Explorer


Theorem sratset

Description: Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses srapart.a ( 𝜑𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
srapart.s ( 𝜑𝑆 ⊆ ( Base ‘ 𝑊 ) )
Assertion sratset ( 𝜑 → ( TopSet ‘ 𝑊 ) = ( TopSet ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 srapart.a ( 𝜑𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) )
2 srapart.s ( 𝜑𝑆 ⊆ ( Base ‘ 𝑊 ) )
3 df-tset TopSet = Slot 9
4 9nn 9 ∈ ℕ
5 8lt9 8 < 9
6 5 olci ( 9 < 5 ∨ 8 < 9 )
7 1 2 3 4 6 sralem ( 𝜑 → ( TopSet ‘ 𝑊 ) = ( TopSet ‘ 𝐴 ) )