Database BASIC ALGEBRAIC STRUCTURES Rings Semirings srg1expzeq1  
				
		 
		
			
		 
		Description:   The exponentiation (by a nonnegative integer) of the multiplicative
       identity of a semiring, analogous to mulgnn0z  .  (Contributed by AV , 25-Nov-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						srg1expzeq1.g ⊢  𝐺   =  ( mulGrp ‘ 𝑅  )  
					
						srg1expzeq1.t ⊢   ·    =  ( .g  ‘ 𝐺  )  
					
						srg1expzeq1.1 ⊢   1    =  ( 1r  ‘ 𝑅  )  
				
					Assertion 
					srg1expzeq1 ⊢   ( ( 𝑅   ∈  SRing  ∧  𝑁   ∈  ℕ0  )  →  ( 𝑁   ·    1   )  =   1   )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							srg1expzeq1.g ⊢  𝐺   =  ( mulGrp ‘ 𝑅  )  
						
							2 
								
							 
							srg1expzeq1.t ⊢   ·    =  ( .g  ‘ 𝐺  )  
						
							3 
								
							 
							srg1expzeq1.1 ⊢   1    =  ( 1r  ‘ 𝑅  )  
						
							4 
								1 
							 
							srgmgp ⊢  ( 𝑅   ∈  SRing  →  𝐺   ∈  Mnd )  
						
							5 
								
							 
							eqid ⊢  ( Base ‘ 𝐺  )  =  ( Base ‘ 𝐺  )  
						
							6 
								1  3 
							 
							ringidval ⊢   1    =  ( 0g  ‘ 𝐺  )  
						
							7 
								5  2  6 
							 
							mulgnn0z ⊢  ( ( 𝐺   ∈  Mnd  ∧  𝑁   ∈  ℕ0  )  →  ( 𝑁   ·    1   )  =   1   )  
						
							8 
								4  7 
							 
							sylan ⊢  ( ( 𝑅   ∈  SRing  ∧  𝑁   ∈  ℕ0  )  →  ( 𝑁   ·    1   )  =   1   )