Database
BASIC ALGEBRAIC STRUCTURES
Rings
Ring unit
Semirings
srg1expzeq1
Metamath Proof Explorer
Description: The exponentiation (by a nonnegative integer) of the multiplicative
identity of a semiring, analogous to mulgnn0z . (Contributed by AV , 25-Nov-2019)
Ref
Expression
Hypotheses
srg1expzeq1.g
⊢ 𝐺 = ( mulGrp ‘ 𝑅 )
srg1expzeq1.t
⊢ · = ( .g ‘ 𝐺 )
srg1expzeq1.1
⊢ 1 = ( 1r ‘ 𝑅 )
Assertion
srg1expzeq1
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 1 ) = 1 )
Proof
Step
Hyp
Ref
Expression
1
srg1expzeq1.g
⊢ 𝐺 = ( mulGrp ‘ 𝑅 )
2
srg1expzeq1.t
⊢ · = ( .g ‘ 𝐺 )
3
srg1expzeq1.1
⊢ 1 = ( 1r ‘ 𝑅 )
4
1
srgmgp
⊢ ( 𝑅 ∈ SRing → 𝐺 ∈ Mnd )
5
eqid
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
6
1 3
ringidval
⊢ 1 = ( 0g ‘ 𝐺 )
7
5 2 6
mulgnn0z
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 1 ) = 1 )
8
4 7
sylan
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 1 ) = 1 )