| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srg1zr.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | srg1zr.p | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 3 |  | srg1zr.t | ⊢  ∗   =  ( .r ‘ 𝑅 ) | 
						
							| 4 |  | pm4.24 | ⊢ ( 𝐵  =  { 𝑍 }  ↔  ( 𝐵  =  { 𝑍 }  ∧  𝐵  =  { 𝑍 } ) ) | 
						
							| 5 |  | srgmnd | ⊢ ( 𝑅  ∈  SRing  →  𝑅  ∈  Mnd ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  →  𝑅  ∈  Mnd ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  ∧  𝑍  ∈  𝐵 )  →  𝑅  ∈  Mnd ) | 
						
							| 8 |  | mndmgm | ⊢ ( 𝑅  ∈  Mnd  →  𝑅  ∈  Mgm ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  ∧  𝑍  ∈  𝐵 )  →  𝑅  ∈  Mgm ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  ∧  𝑍  ∈  𝐵 )  →  𝑍  ∈  𝐵 ) | 
						
							| 11 |  | simpl2 | ⊢ ( ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  ∧  𝑍  ∈  𝐵 )  →   +   Fn  ( 𝐵  ×  𝐵 ) ) | 
						
							| 12 | 1 2 | mgmb1mgm1 | ⊢ ( ( 𝑅  ∈  Mgm  ∧  𝑍  ∈  𝐵  ∧   +   Fn  ( 𝐵  ×  𝐵 ) )  →  ( 𝐵  =  { 𝑍 }  ↔   +   =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 } ) ) | 
						
							| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  ∧  𝑍  ∈  𝐵 )  →  ( 𝐵  =  { 𝑍 }  ↔   +   =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 } ) ) | 
						
							| 14 |  | simpl1 | ⊢ ( ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  ∧  𝑍  ∈  𝐵 )  →  𝑅  ∈  SRing ) | 
						
							| 15 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 16 | 15 | srgmgp | ⊢ ( 𝑅  ∈  SRing  →  ( mulGrp ‘ 𝑅 )  ∈  Mnd ) | 
						
							| 17 |  | mndmgm | ⊢ ( ( mulGrp ‘ 𝑅 )  ∈  Mnd  →  ( mulGrp ‘ 𝑅 )  ∈  Mgm ) | 
						
							| 18 | 14 16 17 | 3syl | ⊢ ( ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  ∧  𝑍  ∈  𝐵 )  →  ( mulGrp ‘ 𝑅 )  ∈  Mgm ) | 
						
							| 19 | 15 3 | mgpplusg | ⊢  ∗   =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 20 | 19 | fneq1i | ⊢ (  ∗   Fn  ( 𝐵  ×  𝐵 )  ↔  ( +g ‘ ( mulGrp ‘ 𝑅 ) )  Fn  ( 𝐵  ×  𝐵 ) ) | 
						
							| 21 | 20 | biimpi | ⊢ (  ∗   Fn  ( 𝐵  ×  𝐵 )  →  ( +g ‘ ( mulGrp ‘ 𝑅 ) )  Fn  ( 𝐵  ×  𝐵 ) ) | 
						
							| 22 | 21 | 3ad2ant3 | ⊢ ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  →  ( +g ‘ ( mulGrp ‘ 𝑅 ) )  Fn  ( 𝐵  ×  𝐵 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  ∧  𝑍  ∈  𝐵 )  →  ( +g ‘ ( mulGrp ‘ 𝑅 ) )  Fn  ( 𝐵  ×  𝐵 ) ) | 
						
							| 24 | 15 1 | mgpbas | ⊢ 𝐵  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 25 |  | eqid | ⊢ ( +g ‘ ( mulGrp ‘ 𝑅 ) )  =  ( +g ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 26 | 24 25 | mgmb1mgm1 | ⊢ ( ( ( mulGrp ‘ 𝑅 )  ∈  Mgm  ∧  𝑍  ∈  𝐵  ∧  ( +g ‘ ( mulGrp ‘ 𝑅 ) )  Fn  ( 𝐵  ×  𝐵 ) )  →  ( 𝐵  =  { 𝑍 }  ↔  ( +g ‘ ( mulGrp ‘ 𝑅 ) )  =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 } ) ) | 
						
							| 27 | 18 10 23 26 | syl3anc | ⊢ ( ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  ∧  𝑍  ∈  𝐵 )  →  ( 𝐵  =  { 𝑍 }  ↔  ( +g ‘ ( mulGrp ‘ 𝑅 ) )  =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 } ) ) | 
						
							| 28 | 19 | eqcomi | ⊢ ( +g ‘ ( mulGrp ‘ 𝑅 ) )  =   ∗ | 
						
							| 29 | 28 | a1i | ⊢ ( ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  ∧  𝑍  ∈  𝐵 )  →  ( +g ‘ ( mulGrp ‘ 𝑅 ) )  =   ∗  ) | 
						
							| 30 | 29 | eqeq1d | ⊢ ( ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  ∧  𝑍  ∈  𝐵 )  →  ( ( +g ‘ ( mulGrp ‘ 𝑅 ) )  =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 }  ↔   ∗   =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 } ) ) | 
						
							| 31 | 27 30 | bitrd | ⊢ ( ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  ∧  𝑍  ∈  𝐵 )  →  ( 𝐵  =  { 𝑍 }  ↔   ∗   =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 } ) ) | 
						
							| 32 | 13 31 | anbi12d | ⊢ ( ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  ∧  𝑍  ∈  𝐵 )  →  ( ( 𝐵  =  { 𝑍 }  ∧  𝐵  =  { 𝑍 } )  ↔  (  +   =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 }  ∧   ∗   =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 } ) ) ) | 
						
							| 33 | 4 32 | bitrid | ⊢ ( ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  ∧  𝑍  ∈  𝐵 )  →  ( 𝐵  =  { 𝑍 }  ↔  (  +   =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 }  ∧   ∗   =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 } ) ) ) |