Step |
Hyp |
Ref |
Expression |
1 |
|
srgbinom.s |
⊢ 𝑆 = ( Base ‘ 𝑅 ) |
2 |
|
srgbinom.m |
⊢ × = ( .r ‘ 𝑅 ) |
3 |
|
srgbinom.t |
⊢ · = ( .g ‘ 𝑅 ) |
4 |
|
srgbinom.a |
⊢ + = ( +g ‘ 𝑅 ) |
5 |
|
srgbinom.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
6 |
|
srgbinom.e |
⊢ ↑ = ( .g ‘ 𝐺 ) |
7 |
|
srgbinomlem.r |
⊢ ( 𝜑 → 𝑅 ∈ SRing ) |
8 |
|
srgbinomlem.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
9 |
|
srgbinomlem.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
10 |
|
srgbinomlem.c |
⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) |
11 |
|
srgbinomlem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
12 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → 𝑅 ∈ SRing ) |
13 |
5
|
srgmgp |
⊢ ( 𝑅 ∈ SRing → 𝐺 ∈ Mnd ) |
14 |
7 13
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → 𝐺 ∈ Mnd ) |
16 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → 𝐷 ∈ ℕ0 ) |
17 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → 𝐴 ∈ 𝑆 ) |
18 |
5 1
|
mgpbas |
⊢ 𝑆 = ( Base ‘ 𝐺 ) |
19 |
18 6
|
mulgnn0cl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐷 ∈ ℕ0 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐷 ↑ 𝐴 ) ∈ 𝑆 ) |
20 |
15 16 17 19
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → ( 𝐷 ↑ 𝐴 ) ∈ 𝑆 ) |
21 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → 𝐸 ∈ ℕ0 ) |
22 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → 𝐵 ∈ 𝑆 ) |
23 |
18 6
|
mulgnn0cl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐸 ∈ ℕ0 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐸 ↑ 𝐵 ) ∈ 𝑆 ) |
24 |
15 21 22 23
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → ( 𝐸 ↑ 𝐵 ) ∈ 𝑆 ) |
25 |
1 2
|
srgcl |
⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝐷 ↑ 𝐴 ) ∈ 𝑆 ∧ ( 𝐸 ↑ 𝐵 ) ∈ 𝑆 ) → ( ( 𝐷 ↑ 𝐴 ) × ( 𝐸 ↑ 𝐵 ) ) ∈ 𝑆 ) |
26 |
12 20 24 25
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → ( ( 𝐷 ↑ 𝐴 ) × ( 𝐸 ↑ 𝐵 ) ) ∈ 𝑆 ) |