Step |
Hyp |
Ref |
Expression |
1 |
|
srgbinom.s |
⊢ 𝑆 = ( Base ‘ 𝑅 ) |
2 |
|
srgbinom.m |
⊢ × = ( .r ‘ 𝑅 ) |
3 |
|
srgbinom.t |
⊢ · = ( .g ‘ 𝑅 ) |
4 |
|
srgbinom.a |
⊢ + = ( +g ‘ 𝑅 ) |
5 |
|
srgbinom.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
6 |
|
srgbinom.e |
⊢ ↑ = ( .g ‘ 𝐺 ) |
7 |
|
srgbinomlem.r |
⊢ ( 𝜑 → 𝑅 ∈ SRing ) |
8 |
|
srgbinomlem.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
9 |
|
srgbinomlem.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
10 |
|
srgbinomlem.c |
⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) |
11 |
|
srgbinomlem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
12 |
|
srgmnd |
⊢ ( 𝑅 ∈ SRing → 𝑅 ∈ Mnd ) |
13 |
7 12
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → 𝑅 ∈ Mnd ) |
15 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → 𝐶 ∈ ℕ0 ) |
16 |
1 2 3 4 5 6 7 8 9 10 11
|
srgbinomlem1 |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → ( ( 𝐷 ↑ 𝐴 ) × ( 𝐸 ↑ 𝐵 ) ) ∈ 𝑆 ) |
17 |
16
|
3adantr1 |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → ( ( 𝐷 ↑ 𝐴 ) × ( 𝐸 ↑ 𝐵 ) ) ∈ 𝑆 ) |
18 |
1 3
|
mulgnn0cl |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐶 ∈ ℕ0 ∧ ( ( 𝐷 ↑ 𝐴 ) × ( 𝐸 ↑ 𝐵 ) ) ∈ 𝑆 ) → ( 𝐶 · ( ( 𝐷 ↑ 𝐴 ) × ( 𝐸 ↑ 𝐵 ) ) ) ∈ 𝑆 ) |
19 |
14 15 17 18
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0 ∧ 𝐸 ∈ ℕ0 ) ) → ( 𝐶 · ( ( 𝐷 ↑ 𝐴 ) × ( 𝐸 ↑ 𝐵 ) ) ) ∈ 𝑆 ) |