| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 6 | 1 2 3 4 5 | issrg | ⊢ ( 𝑅  ∈  SRing  ↔  ( 𝑅  ∈  CMnd  ∧  ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑅 ) ( ∀ 𝑦  ∈  ( Base ‘ 𝑅 ) ∀ 𝑧  ∈  ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 )  =  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) )  ∧  ( ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 )  =  ( 0g ‘ 𝑅 )  ∧  ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) ) ) ) | 
						
							| 7 | 6 | simp1bi | ⊢ ( 𝑅  ∈  SRing  →  𝑅  ∈  CMnd ) |