Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
6 |
1 2 3 4 5
|
issrg |
⊢ ( 𝑅 ∈ SRing ↔ ( 𝑅 ∈ CMnd ∧ ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) ∧ ( ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) ) ) |
7 |
6
|
simp1bi |
⊢ ( 𝑅 ∈ SRing → 𝑅 ∈ CMnd ) |