| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srg1zr.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | srg1zr.p | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 3 |  | srg1zr.t | ⊢  ∗   =  ( .r ‘ 𝑅 ) | 
						
							| 4 |  | srgen1zr.p | ⊢ 𝑍  =  ( 0g ‘ 𝑅 ) | 
						
							| 5 | 1 4 | srg0cl | ⊢ ( 𝑅  ∈  SRing  →  𝑍  ∈  𝐵 ) | 
						
							| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  →  𝑍  ∈  𝐵 ) | 
						
							| 7 |  | en1eqsnbi | ⊢ ( 𝑍  ∈  𝐵  →  ( 𝐵  ≈  1o  ↔  𝐵  =  { 𝑍 } ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  ∧  𝑍  ∈  𝐵 )  →  ( 𝐵  ≈  1o  ↔  𝐵  =  { 𝑍 } ) ) | 
						
							| 9 | 1 2 3 | srg1zr | ⊢ ( ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  ∧  𝑍  ∈  𝐵 )  →  ( 𝐵  =  { 𝑍 }  ↔  (  +   =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 }  ∧   ∗   =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 } ) ) ) | 
						
							| 10 | 8 9 | bitrd | ⊢ ( ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  ∧  𝑍  ∈  𝐵 )  →  ( 𝐵  ≈  1o  ↔  (  +   =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 }  ∧   ∗   =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 } ) ) ) | 
						
							| 11 | 6 10 | mpdan | ⊢ ( ( 𝑅  ∈  SRing  ∧   +   Fn  ( 𝐵  ×  𝐵 )  ∧   ∗   Fn  ( 𝐵  ×  𝐵 ) )  →  ( 𝐵  ≈  1o  ↔  (  +   =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 }  ∧   ∗   =  { 〈 〈 𝑍 ,  𝑍 〉 ,  𝑍 〉 } ) ) ) |