| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srgfcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | srgfcl.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝑅  ∈  SRing  ∧   ·   Fn  ( 𝐵  ×  𝐵 ) )  →   ·   Fn  ( 𝐵  ×  𝐵 ) ) | 
						
							| 4 | 1 2 | srgcl | ⊢ ( ( 𝑅  ∈  SRing  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎  ·  𝑏 )  ∈  𝐵 ) | 
						
							| 5 | 4 | 3expb | ⊢ ( ( 𝑅  ∈  SRing  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎  ·  𝑏 )  ∈  𝐵 ) | 
						
							| 6 | 5 | ralrimivva | ⊢ ( 𝑅  ∈  SRing  →  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎  ·  𝑏 )  ∈  𝐵 ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑐  =  〈 𝑎 ,  𝑏 〉  →  (  ·  ‘ 𝑐 )  =  (  ·  ‘ 〈 𝑎 ,  𝑏 〉 ) ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝑐  =  〈 𝑎 ,  𝑏 〉  →  ( (  ·  ‘ 𝑐 )  ∈  𝐵  ↔  (  ·  ‘ 〈 𝑎 ,  𝑏 〉 )  ∈  𝐵 ) ) | 
						
							| 9 |  | df-ov | ⊢ ( 𝑎  ·  𝑏 )  =  (  ·  ‘ 〈 𝑎 ,  𝑏 〉 ) | 
						
							| 10 | 9 | eqcomi | ⊢ (  ·  ‘ 〈 𝑎 ,  𝑏 〉 )  =  ( 𝑎  ·  𝑏 ) | 
						
							| 11 | 10 | eleq1i | ⊢ ( (  ·  ‘ 〈 𝑎 ,  𝑏 〉 )  ∈  𝐵  ↔  ( 𝑎  ·  𝑏 )  ∈  𝐵 ) | 
						
							| 12 | 8 11 | bitrdi | ⊢ ( 𝑐  =  〈 𝑎 ,  𝑏 〉  →  ( (  ·  ‘ 𝑐 )  ∈  𝐵  ↔  ( 𝑎  ·  𝑏 )  ∈  𝐵 ) ) | 
						
							| 13 | 12 | ralxp | ⊢ ( ∀ 𝑐  ∈  ( 𝐵  ×  𝐵 ) (  ·  ‘ 𝑐 )  ∈  𝐵  ↔  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎  ·  𝑏 )  ∈  𝐵 ) | 
						
							| 14 | 6 13 | sylibr | ⊢ ( 𝑅  ∈  SRing  →  ∀ 𝑐  ∈  ( 𝐵  ×  𝐵 ) (  ·  ‘ 𝑐 )  ∈  𝐵 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑅  ∈  SRing  ∧   ·   Fn  ( 𝐵  ×  𝐵 ) )  →  ∀ 𝑐  ∈  ( 𝐵  ×  𝐵 ) (  ·  ‘ 𝑐 )  ∈  𝐵 ) | 
						
							| 16 |  | fnfvrnss | ⊢ ( (  ·   Fn  ( 𝐵  ×  𝐵 )  ∧  ∀ 𝑐  ∈  ( 𝐵  ×  𝐵 ) (  ·  ‘ 𝑐 )  ∈  𝐵 )  →  ran   ·   ⊆  𝐵 ) | 
						
							| 17 | 3 15 16 | syl2anc | ⊢ ( ( 𝑅  ∈  SRing  ∧   ·   Fn  ( 𝐵  ×  𝐵 ) )  →  ran   ·   ⊆  𝐵 ) | 
						
							| 18 |  | df-f | ⊢ (  ·  : ( 𝐵  ×  𝐵 ) ⟶ 𝐵  ↔  (  ·   Fn  ( 𝐵  ×  𝐵 )  ∧  ran   ·   ⊆  𝐵 ) ) | 
						
							| 19 | 3 17 18 | sylanbrc | ⊢ ( ( 𝑅  ∈  SRing  ∧   ·   Fn  ( 𝐵  ×  𝐵 ) )  →   ·  : ( 𝐵  ×  𝐵 ) ⟶ 𝐵 ) |