Metamath Proof Explorer


Theorem srgfcl

Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by AV, 24-Aug-2021)

Ref Expression
Hypotheses srgfcl.b 𝐵 = ( Base ‘ 𝑅 )
srgfcl.t · = ( .r𝑅 )
Assertion srgfcl ( ( 𝑅 ∈ SRing ∧ · Fn ( 𝐵 × 𝐵 ) ) → · : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )

Proof

Step Hyp Ref Expression
1 srgfcl.b 𝐵 = ( Base ‘ 𝑅 )
2 srgfcl.t · = ( .r𝑅 )
3 simpr ( ( 𝑅 ∈ SRing ∧ · Fn ( 𝐵 × 𝐵 ) ) → · Fn ( 𝐵 × 𝐵 ) )
4 1 2 srgcl ( ( 𝑅 ∈ SRing ∧ 𝑎𝐵𝑏𝐵 ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 )
5 4 3expb ( ( 𝑅 ∈ SRing ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 )
6 5 ralrimivva ( 𝑅 ∈ SRing → ∀ 𝑎𝐵𝑏𝐵 ( 𝑎 · 𝑏 ) ∈ 𝐵 )
7 fveq2 ( 𝑐 = ⟨ 𝑎 , 𝑏 ⟩ → ( ·𝑐 ) = ( · ‘ ⟨ 𝑎 , 𝑏 ⟩ ) )
8 7 eleq1d ( 𝑐 = ⟨ 𝑎 , 𝑏 ⟩ → ( ( ·𝑐 ) ∈ 𝐵 ↔ ( · ‘ ⟨ 𝑎 , 𝑏 ⟩ ) ∈ 𝐵 ) )
9 df-ov ( 𝑎 · 𝑏 ) = ( · ‘ ⟨ 𝑎 , 𝑏 ⟩ )
10 9 eqcomi ( · ‘ ⟨ 𝑎 , 𝑏 ⟩ ) = ( 𝑎 · 𝑏 )
11 10 eleq1i ( ( · ‘ ⟨ 𝑎 , 𝑏 ⟩ ) ∈ 𝐵 ↔ ( 𝑎 · 𝑏 ) ∈ 𝐵 )
12 8 11 bitrdi ( 𝑐 = ⟨ 𝑎 , 𝑏 ⟩ → ( ( ·𝑐 ) ∈ 𝐵 ↔ ( 𝑎 · 𝑏 ) ∈ 𝐵 ) )
13 12 ralxp ( ∀ 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ·𝑐 ) ∈ 𝐵 ↔ ∀ 𝑎𝐵𝑏𝐵 ( 𝑎 · 𝑏 ) ∈ 𝐵 )
14 6 13 sylibr ( 𝑅 ∈ SRing → ∀ 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ·𝑐 ) ∈ 𝐵 )
15 14 adantr ( ( 𝑅 ∈ SRing ∧ · Fn ( 𝐵 × 𝐵 ) ) → ∀ 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ·𝑐 ) ∈ 𝐵 )
16 fnfvrnss ( ( · Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ·𝑐 ) ∈ 𝐵 ) → ran ·𝐵 )
17 3 15 16 syl2anc ( ( 𝑅 ∈ SRing ∧ · Fn ( 𝐵 × 𝐵 ) ) → ran ·𝐵 )
18 df-f ( · : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ↔ ( · Fn ( 𝐵 × 𝐵 ) ∧ ran ·𝐵 ) )
19 3 17 18 sylanbrc ( ( 𝑅 ∈ SRing ∧ · Fn ( 𝐵 × 𝐵 ) ) → · : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )