Step |
Hyp |
Ref |
Expression |
1 |
|
srgfcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
srgfcl.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
simpr |
⊢ ( ( 𝑅 ∈ SRing ∧ · Fn ( 𝐵 × 𝐵 ) ) → · Fn ( 𝐵 × 𝐵 ) ) |
4 |
1 2
|
srgcl |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
5 |
4
|
3expb |
⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
6 |
5
|
ralrimivva |
⊢ ( 𝑅 ∈ SRing → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
7 |
|
fveq2 |
⊢ ( 𝑐 = 〈 𝑎 , 𝑏 〉 → ( · ‘ 𝑐 ) = ( · ‘ 〈 𝑎 , 𝑏 〉 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑐 = 〈 𝑎 , 𝑏 〉 → ( ( · ‘ 𝑐 ) ∈ 𝐵 ↔ ( · ‘ 〈 𝑎 , 𝑏 〉 ) ∈ 𝐵 ) ) |
9 |
|
df-ov |
⊢ ( 𝑎 · 𝑏 ) = ( · ‘ 〈 𝑎 , 𝑏 〉 ) |
10 |
9
|
eqcomi |
⊢ ( · ‘ 〈 𝑎 , 𝑏 〉 ) = ( 𝑎 · 𝑏 ) |
11 |
10
|
eleq1i |
⊢ ( ( · ‘ 〈 𝑎 , 𝑏 〉 ) ∈ 𝐵 ↔ ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
12 |
8 11
|
bitrdi |
⊢ ( 𝑐 = 〈 𝑎 , 𝑏 〉 → ( ( · ‘ 𝑐 ) ∈ 𝐵 ↔ ( 𝑎 · 𝑏 ) ∈ 𝐵 ) ) |
13 |
12
|
ralxp |
⊢ ( ∀ 𝑐 ∈ ( 𝐵 × 𝐵 ) ( · ‘ 𝑐 ) ∈ 𝐵 ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
14 |
6 13
|
sylibr |
⊢ ( 𝑅 ∈ SRing → ∀ 𝑐 ∈ ( 𝐵 × 𝐵 ) ( · ‘ 𝑐 ) ∈ 𝐵 ) |
15 |
14
|
adantr |
⊢ ( ( 𝑅 ∈ SRing ∧ · Fn ( 𝐵 × 𝐵 ) ) → ∀ 𝑐 ∈ ( 𝐵 × 𝐵 ) ( · ‘ 𝑐 ) ∈ 𝐵 ) |
16 |
|
fnfvrnss |
⊢ ( ( · Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑐 ∈ ( 𝐵 × 𝐵 ) ( · ‘ 𝑐 ) ∈ 𝐵 ) → ran · ⊆ 𝐵 ) |
17 |
3 15 16
|
syl2anc |
⊢ ( ( 𝑅 ∈ SRing ∧ · Fn ( 𝐵 × 𝐵 ) ) → ran · ⊆ 𝐵 ) |
18 |
|
df-f |
⊢ ( · : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ↔ ( · Fn ( 𝐵 × 𝐵 ) ∧ ran · ⊆ 𝐵 ) ) |
19 |
3 17 18
|
sylanbrc |
⊢ ( ( 𝑅 ∈ SRing ∧ · Fn ( 𝐵 × 𝐵 ) ) → · : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |