Step |
Hyp |
Ref |
Expression |
1 |
|
srgidm.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
srgidm.t |
⊢ · = ( .r ‘ 𝑅 ) |
3 |
|
srgidm.u |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
5 |
4
|
srgmgp |
⊢ ( 𝑅 ∈ SRing → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
6 |
4 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
7 |
4 2
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
8 |
4 3
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
9 |
6 7 8
|
mndlrid |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( ( 1 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 1 ) = 𝑋 ) ) |
10 |
5 9
|
sylan |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 1 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 1 ) = 𝑋 ) ) |