Metamath Proof Explorer


Theorem srgmnd

Description: A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018)

Ref Expression
Assertion srgmnd ( 𝑅 ∈ SRing → 𝑅 ∈ Mnd )

Proof

Step Hyp Ref Expression
1 srgcmn ( 𝑅 ∈ SRing → 𝑅 ∈ CMnd )
2 cmnmnd ( 𝑅 ∈ CMnd → 𝑅 ∈ Mnd )
3 1 2 syl ( 𝑅 ∈ SRing → 𝑅 ∈ Mnd )