| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srgo2times.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | srgo2times.p | ⊢  +   =  ( +g ‘ 𝑅 ) | 
						
							| 3 |  | srgo2times.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 4 |  | srgo2times.u | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 5 | 1 2 3 | srgdir | ⊢ ( ( 𝑅  ∈  SRing  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 6 | 5 | ralrimivvva | ⊢ ( 𝑅  ∈  SRing  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑅  ∈  SRing  ∧  𝐴  ∈  𝐵 )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  +  𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 )  +  ( 𝑦  ·  𝑧 ) ) ) | 
						
							| 8 | 1 4 | srgidcl | ⊢ ( 𝑅  ∈  SRing  →   1   ∈  𝐵 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑅  ∈  SRing  ∧  𝐴  ∈  𝐵 )  →   1   ∈  𝐵 ) | 
						
							| 10 | 1 3 4 | srglidm | ⊢ ( ( 𝑅  ∈  SRing  ∧  𝑥  ∈  𝐵 )  →  (  1   ·  𝑥 )  =  𝑥 ) | 
						
							| 11 | 10 | ralrimiva | ⊢ ( 𝑅  ∈  SRing  →  ∀ 𝑥  ∈  𝐵 (  1   ·  𝑥 )  =  𝑥 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑅  ∈  SRing  ∧  𝐴  ∈  𝐵 )  →  ∀ 𝑥  ∈  𝐵 (  1   ·  𝑥 )  =  𝑥 ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝑅  ∈  SRing  ∧  𝐴  ∈  𝐵 )  →  𝐴  ∈  𝐵 ) | 
						
							| 14 | 7 9 12 13 | o2timesd | ⊢ ( ( 𝑅  ∈  SRing  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  +  𝐴 )  =  ( (  1   +   1  )  ·  𝐴 ) ) |