| Step |
Hyp |
Ref |
Expression |
| 1 |
|
srgpcomp.s |
⊢ 𝑆 = ( Base ‘ 𝑅 ) |
| 2 |
|
srgpcomp.m |
⊢ × = ( .r ‘ 𝑅 ) |
| 3 |
|
srgpcomp.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
| 4 |
|
srgpcomp.e |
⊢ ↑ = ( .g ‘ 𝐺 ) |
| 5 |
|
srgpcomp.r |
⊢ ( 𝜑 → 𝑅 ∈ SRing ) |
| 6 |
|
srgpcomp.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 7 |
|
srgpcomp.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
| 8 |
|
srgpcomp.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 9 |
|
srgpcomp.c |
⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) |
| 10 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ↑ 𝐵 ) = ( 0 ↑ 𝐵 ) ) |
| 11 |
10
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( ( 0 ↑ 𝐵 ) × 𝐴 ) ) |
| 12 |
10
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) = ( 𝐴 × ( 0 ↑ 𝐵 ) ) ) |
| 13 |
11 12
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ↔ ( ( 0 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 0 ↑ 𝐵 ) ) ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝜑 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ) ↔ ( 𝜑 → ( ( 0 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 0 ↑ 𝐵 ) ) ) ) ) |
| 15 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 𝐵 ) = ( 𝑦 ↑ 𝐵 ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) ) |
| 17 |
15
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) |
| 18 |
16 17
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ↔ ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) ) |
| 19 |
18
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ) ↔ ( 𝜑 → ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) ) ) |
| 20 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ↑ 𝐵 ) = ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) |
| 21 |
20
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) ) |
| 22 |
20
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) |
| 23 |
21 22
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ↔ ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) ) |
| 24 |
23
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝜑 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ) ↔ ( 𝜑 → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) ) ) |
| 25 |
|
oveq1 |
⊢ ( 𝑥 = 𝐾 → ( 𝑥 ↑ 𝐵 ) = ( 𝐾 ↑ 𝐵 ) ) |
| 26 |
25
|
oveq1d |
⊢ ( 𝑥 = 𝐾 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) |
| 27 |
25
|
oveq2d |
⊢ ( 𝑥 = 𝐾 → ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) = ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) |
| 28 |
26 27
|
eqeq12d |
⊢ ( 𝑥 = 𝐾 → ( ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ↔ ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) ) |
| 29 |
28
|
imbi2d |
⊢ ( 𝑥 = 𝐾 → ( ( 𝜑 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ) ↔ ( 𝜑 → ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) ) ) |
| 30 |
3 1
|
mgpbas |
⊢ 𝑆 = ( Base ‘ 𝐺 ) |
| 31 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 32 |
3 31
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝐺 ) |
| 33 |
30 32 4
|
mulg0 |
⊢ ( 𝐵 ∈ 𝑆 → ( 0 ↑ 𝐵 ) = ( 1r ‘ 𝑅 ) ) |
| 34 |
7 33
|
syl |
⊢ ( 𝜑 → ( 0 ↑ 𝐵 ) = ( 1r ‘ 𝑅 ) ) |
| 35 |
34
|
oveq1d |
⊢ ( 𝜑 → ( ( 0 ↑ 𝐵 ) × 𝐴 ) = ( ( 1r ‘ 𝑅 ) × 𝐴 ) ) |
| 36 |
1 2 31
|
srgridm |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝐴 ∈ 𝑆 ) → ( 𝐴 × ( 1r ‘ 𝑅 ) ) = 𝐴 ) |
| 37 |
5 6 36
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 × ( 1r ‘ 𝑅 ) ) = 𝐴 ) |
| 38 |
34
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 × ( 0 ↑ 𝐵 ) ) = ( 𝐴 × ( 1r ‘ 𝑅 ) ) ) |
| 39 |
1 2 31
|
srglidm |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝐴 ∈ 𝑆 ) → ( ( 1r ‘ 𝑅 ) × 𝐴 ) = 𝐴 ) |
| 40 |
5 6 39
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) × 𝐴 ) = 𝐴 ) |
| 41 |
37 38 40
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) × 𝐴 ) = ( 𝐴 × ( 0 ↑ 𝐵 ) ) ) |
| 42 |
35 41
|
eqtrd |
⊢ ( 𝜑 → ( ( 0 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 0 ↑ 𝐵 ) ) ) |
| 43 |
3
|
srgmgp |
⊢ ( 𝑅 ∈ SRing → 𝐺 ∈ Mnd ) |
| 44 |
5 43
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝐺 ∈ Mnd ) |
| 46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℕ0 ) |
| 47 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝐵 ∈ 𝑆 ) |
| 48 |
3 2
|
mgpplusg |
⊢ × = ( +g ‘ 𝐺 ) |
| 49 |
30 4 48
|
mulgnn0p1 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝑦 + 1 ) ↑ 𝐵 ) = ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) ) |
| 50 |
45 46 47 49
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) ↑ 𝐵 ) = ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) ) |
| 51 |
50
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) × 𝐴 ) ) |
| 52 |
9
|
eqcomd |
⊢ ( 𝜑 → ( 𝐵 × 𝐴 ) = ( 𝐴 × 𝐵 ) ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝐵 × 𝐴 ) = ( 𝐴 × 𝐵 ) ) |
| 54 |
53
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 ↑ 𝐵 ) × ( 𝐵 × 𝐴 ) ) = ( ( 𝑦 ↑ 𝐵 ) × ( 𝐴 × 𝐵 ) ) ) |
| 55 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝑅 ∈ SRing ) |
| 56 |
30 4 45 46 47
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 ↑ 𝐵 ) ∈ 𝑆 ) |
| 57 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝐴 ∈ 𝑆 ) |
| 58 |
1 2
|
srgass |
⊢ ( ( 𝑅 ∈ SRing ∧ ( ( 𝑦 ↑ 𝐵 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) × 𝐴 ) = ( ( 𝑦 ↑ 𝐵 ) × ( 𝐵 × 𝐴 ) ) ) |
| 59 |
55 56 47 57 58
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) × 𝐴 ) = ( ( 𝑦 ↑ 𝐵 ) × ( 𝐵 × 𝐴 ) ) ) |
| 60 |
1 2
|
srgass |
⊢ ( ( 𝑅 ∈ SRing ∧ ( ( 𝑦 ↑ 𝐵 ) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) = ( ( 𝑦 ↑ 𝐵 ) × ( 𝐴 × 𝐵 ) ) ) |
| 61 |
55 56 57 47 60
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) = ( ( 𝑦 ↑ 𝐵 ) × ( 𝐴 × 𝐵 ) ) ) |
| 62 |
54 59 61
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) × 𝐴 ) = ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) ) |
| 63 |
51 62
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) ) |
| 64 |
63
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) ) |
| 65 |
|
oveq1 |
⊢ ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) = ( ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) × 𝐵 ) ) |
| 66 |
1 2
|
srgass |
⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝐴 ∈ 𝑆 ∧ ( 𝑦 ↑ 𝐵 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) × 𝐵 ) = ( 𝐴 × ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) ) ) |
| 67 |
55 57 56 47 66
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) × 𝐵 ) = ( 𝐴 × ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) ) ) |
| 68 |
50
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) = ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) |
| 69 |
68
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝐴 × ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) |
| 70 |
67 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) × 𝐵 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) |
| 71 |
65 70
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) |
| 72 |
64 71
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) |
| 73 |
72
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) ) |
| 74 |
73
|
expcom |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝜑 → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) ) ) |
| 75 |
74
|
a2d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝜑 → ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) → ( 𝜑 → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) ) ) |
| 76 |
14 19 24 29 42 75
|
nn0ind |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝜑 → ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) ) |
| 77 |
8 76
|
mpcom |
⊢ ( 𝜑 → ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) |