Step |
Hyp |
Ref |
Expression |
1 |
|
srgpcomp.s |
⊢ 𝑆 = ( Base ‘ 𝑅 ) |
2 |
|
srgpcomp.m |
⊢ × = ( .r ‘ 𝑅 ) |
3 |
|
srgpcomp.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
4 |
|
srgpcomp.e |
⊢ ↑ = ( .g ‘ 𝐺 ) |
5 |
|
srgpcomp.r |
⊢ ( 𝜑 → 𝑅 ∈ SRing ) |
6 |
|
srgpcomp.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
7 |
|
srgpcomp.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
8 |
|
srgpcomp.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
9 |
|
srgpcomp.c |
⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) |
10 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ↑ 𝐵 ) = ( 0 ↑ 𝐵 ) ) |
11 |
10
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( ( 0 ↑ 𝐵 ) × 𝐴 ) ) |
12 |
10
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) = ( 𝐴 × ( 0 ↑ 𝐵 ) ) ) |
13 |
11 12
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ↔ ( ( 0 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 0 ↑ 𝐵 ) ) ) ) |
14 |
13
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝜑 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ) ↔ ( 𝜑 → ( ( 0 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 0 ↑ 𝐵 ) ) ) ) ) |
15 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 𝐵 ) = ( 𝑦 ↑ 𝐵 ) ) |
16 |
15
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) ) |
17 |
15
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) |
18 |
16 17
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ↔ ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) ) |
19 |
18
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ) ↔ ( 𝜑 → ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) ) ) |
20 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ↑ 𝐵 ) = ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) ) |
22 |
20
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) |
23 |
21 22
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ↔ ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝜑 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ) ↔ ( 𝜑 → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) ) ) |
25 |
|
oveq1 |
⊢ ( 𝑥 = 𝐾 → ( 𝑥 ↑ 𝐵 ) = ( 𝐾 ↑ 𝐵 ) ) |
26 |
25
|
oveq1d |
⊢ ( 𝑥 = 𝐾 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) |
27 |
25
|
oveq2d |
⊢ ( 𝑥 = 𝐾 → ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) = ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) |
28 |
26 27
|
eqeq12d |
⊢ ( 𝑥 = 𝐾 → ( ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ↔ ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) ) |
29 |
28
|
imbi2d |
⊢ ( 𝑥 = 𝐾 → ( ( 𝜑 → ( ( 𝑥 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑥 ↑ 𝐵 ) ) ) ↔ ( 𝜑 → ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) ) ) |
30 |
3 1
|
mgpbas |
⊢ 𝑆 = ( Base ‘ 𝐺 ) |
31 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
32 |
3 31
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝐺 ) |
33 |
30 32 4
|
mulg0 |
⊢ ( 𝐵 ∈ 𝑆 → ( 0 ↑ 𝐵 ) = ( 1r ‘ 𝑅 ) ) |
34 |
7 33
|
syl |
⊢ ( 𝜑 → ( 0 ↑ 𝐵 ) = ( 1r ‘ 𝑅 ) ) |
35 |
34
|
oveq1d |
⊢ ( 𝜑 → ( ( 0 ↑ 𝐵 ) × 𝐴 ) = ( ( 1r ‘ 𝑅 ) × 𝐴 ) ) |
36 |
1 2 31
|
srgridm |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝐴 ∈ 𝑆 ) → ( 𝐴 × ( 1r ‘ 𝑅 ) ) = 𝐴 ) |
37 |
5 6 36
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 × ( 1r ‘ 𝑅 ) ) = 𝐴 ) |
38 |
34
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 × ( 0 ↑ 𝐵 ) ) = ( 𝐴 × ( 1r ‘ 𝑅 ) ) ) |
39 |
1 2 31
|
srglidm |
⊢ ( ( 𝑅 ∈ SRing ∧ 𝐴 ∈ 𝑆 ) → ( ( 1r ‘ 𝑅 ) × 𝐴 ) = 𝐴 ) |
40 |
5 6 39
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) × 𝐴 ) = 𝐴 ) |
41 |
37 38 40
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) × 𝐴 ) = ( 𝐴 × ( 0 ↑ 𝐵 ) ) ) |
42 |
35 41
|
eqtrd |
⊢ ( 𝜑 → ( ( 0 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 0 ↑ 𝐵 ) ) ) |
43 |
3
|
srgmgp |
⊢ ( 𝑅 ∈ SRing → 𝐺 ∈ Mnd ) |
44 |
5 43
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝐺 ∈ Mnd ) |
46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℕ0 ) |
47 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝐵 ∈ 𝑆 ) |
48 |
3 2
|
mgpplusg |
⊢ × = ( +g ‘ 𝐺 ) |
49 |
30 4 48
|
mulgnn0p1 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝑦 + 1 ) ↑ 𝐵 ) = ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) ) |
50 |
45 46 47 49
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) ↑ 𝐵 ) = ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) ) |
51 |
50
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) × 𝐴 ) ) |
52 |
9
|
eqcomd |
⊢ ( 𝜑 → ( 𝐵 × 𝐴 ) = ( 𝐴 × 𝐵 ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝐵 × 𝐴 ) = ( 𝐴 × 𝐵 ) ) |
54 |
53
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 ↑ 𝐵 ) × ( 𝐵 × 𝐴 ) ) = ( ( 𝑦 ↑ 𝐵 ) × ( 𝐴 × 𝐵 ) ) ) |
55 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝑅 ∈ SRing ) |
56 |
30 4
|
mulgnn0cl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐵 ∈ 𝑆 ) → ( 𝑦 ↑ 𝐵 ) ∈ 𝑆 ) |
57 |
45 46 47 56
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 ↑ 𝐵 ) ∈ 𝑆 ) |
58 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → 𝐴 ∈ 𝑆 ) |
59 |
1 2
|
srgass |
⊢ ( ( 𝑅 ∈ SRing ∧ ( ( 𝑦 ↑ 𝐵 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) × 𝐴 ) = ( ( 𝑦 ↑ 𝐵 ) × ( 𝐵 × 𝐴 ) ) ) |
60 |
55 57 47 58 59
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) × 𝐴 ) = ( ( 𝑦 ↑ 𝐵 ) × ( 𝐵 × 𝐴 ) ) ) |
61 |
1 2
|
srgass |
⊢ ( ( 𝑅 ∈ SRing ∧ ( ( 𝑦 ↑ 𝐵 ) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) = ( ( 𝑦 ↑ 𝐵 ) × ( 𝐴 × 𝐵 ) ) ) |
62 |
55 57 58 47 61
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) = ( ( 𝑦 ↑ 𝐵 ) × ( 𝐴 × 𝐵 ) ) ) |
63 |
54 60 62
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) × 𝐴 ) = ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) ) |
64 |
51 63
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) ) |
65 |
64
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) ) |
66 |
|
oveq1 |
⊢ ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) = ( ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) × 𝐵 ) ) |
67 |
1 2
|
srgass |
⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝐴 ∈ 𝑆 ∧ ( 𝑦 ↑ 𝐵 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ) → ( ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) × 𝐵 ) = ( 𝐴 × ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) ) ) |
68 |
55 58 57 47 67
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) × 𝐵 ) = ( 𝐴 × ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) ) ) |
69 |
50
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) = ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) |
70 |
69
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( 𝐴 × ( ( 𝑦 ↑ 𝐵 ) × 𝐵 ) ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) |
71 |
68 70
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) × 𝐵 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) |
72 |
66 71
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) × 𝐵 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) |
73 |
65 72
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) |
74 |
73
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) ) |
75 |
74
|
expcom |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝜑 → ( ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) ) ) |
76 |
75
|
a2d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝜑 → ( ( 𝑦 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝑦 ↑ 𝐵 ) ) ) → ( 𝜑 → ( ( ( 𝑦 + 1 ) ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( ( 𝑦 + 1 ) ↑ 𝐵 ) ) ) ) ) |
77 |
14 19 24 29 42 76
|
nn0ind |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝜑 → ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) ) |
78 |
8 77
|
mpcom |
⊢ ( 𝜑 → ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) = ( 𝐴 × ( 𝐾 ↑ 𝐵 ) ) ) |