Step |
Hyp |
Ref |
Expression |
1 |
|
srgpcomp.s |
⊢ 𝑆 = ( Base ‘ 𝑅 ) |
2 |
|
srgpcomp.m |
⊢ × = ( .r ‘ 𝑅 ) |
3 |
|
srgpcomp.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
4 |
|
srgpcomp.e |
⊢ ↑ = ( .g ‘ 𝐺 ) |
5 |
|
srgpcomp.r |
⊢ ( 𝜑 → 𝑅 ∈ SRing ) |
6 |
|
srgpcomp.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
7 |
|
srgpcomp.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) |
8 |
|
srgpcomp.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
9 |
|
srgpcomp.c |
⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) ) |
10 |
|
srgpcompp.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
11 |
|
srgpcomppsc.t |
⊢ · = ( .g ‘ 𝑅 ) |
12 |
|
srgpcomppsc.c |
⊢ ( 𝜑 → 𝐶 ∈ ℕ0 ) |
13 |
3
|
srgmgp |
⊢ ( 𝑅 ∈ SRing → 𝐺 ∈ Mnd ) |
14 |
5 13
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
15 |
3 1
|
mgpbas |
⊢ 𝑆 = ( Base ‘ 𝐺 ) |
16 |
15 4
|
mulgnn0cl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑆 ) → ( 𝑁 ↑ 𝐴 ) ∈ 𝑆 ) |
17 |
14 10 6 16
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ↑ 𝐴 ) ∈ 𝑆 ) |
18 |
15 4
|
mulgnn0cl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐾 ∈ ℕ0 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐾 ↑ 𝐵 ) ∈ 𝑆 ) |
19 |
14 8 7 18
|
syl3anc |
⊢ ( 𝜑 → ( 𝐾 ↑ 𝐵 ) ∈ 𝑆 ) |
20 |
1 11 2
|
srgmulgass |
⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝐶 ∈ ℕ0 ∧ ( 𝑁 ↑ 𝐴 ) ∈ 𝑆 ∧ ( 𝐾 ↑ 𝐵 ) ∈ 𝑆 ) ) → ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( 𝐾 ↑ 𝐵 ) ) = ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) ) |
21 |
20
|
eqcomd |
⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝐶 ∈ ℕ0 ∧ ( 𝑁 ↑ 𝐴 ) ∈ 𝑆 ∧ ( 𝐾 ↑ 𝐵 ) ∈ 𝑆 ) ) → ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) = ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( 𝐾 ↑ 𝐵 ) ) ) |
22 |
5 12 17 19 21
|
syl13anc |
⊢ ( 𝜑 → ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) = ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( 𝐾 ↑ 𝐵 ) ) ) |
23 |
22
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) × 𝐴 ) = ( ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) ) |
24 |
|
srgmnd |
⊢ ( 𝑅 ∈ SRing → 𝑅 ∈ Mnd ) |
25 |
5 24
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
26 |
1 11
|
mulgnn0cl |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐶 ∈ ℕ0 ∧ ( 𝑁 ↑ 𝐴 ) ∈ 𝑆 ) → ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) ∈ 𝑆 ) |
27 |
25 12 17 26
|
syl3anc |
⊢ ( 𝜑 → ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) ∈ 𝑆 ) |
28 |
1 2
|
srgass |
⊢ ( ( 𝑅 ∈ SRing ∧ ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) ∈ 𝑆 ∧ ( 𝐾 ↑ 𝐵 ) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) ) → ( ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) = ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) |
29 |
5 27 19 6 28
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) = ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) |
30 |
23 29
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) × 𝐴 ) = ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) |
31 |
1 2
|
srgcl |
⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝐾 ↑ 𝐵 ) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ∈ 𝑆 ) |
32 |
5 19 6 31
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ∈ 𝑆 ) |
33 |
1 11 2
|
srgmulgass |
⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝐶 ∈ ℕ0 ∧ ( 𝑁 ↑ 𝐴 ) ∈ 𝑆 ∧ ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ∈ 𝑆 ) ) → ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) = ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) ) |
34 |
5 12 17 32 33
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) = ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) ) |
35 |
1 2
|
srgass |
⊢ ( ( 𝑅 ∈ SRing ∧ ( ( 𝑁 ↑ 𝐴 ) ∈ 𝑆 ∧ ( 𝐾 ↑ 𝐵 ) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) ) → ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) = ( ( 𝑁 ↑ 𝐴 ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) |
36 |
5 17 19 6 35
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) = ( ( 𝑁 ↑ 𝐴 ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) |
37 |
36
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 𝐴 ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) = ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) ) |
38 |
37
|
oveq2d |
⊢ ( 𝜑 → ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) ) = ( 𝐶 · ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) ) ) |
39 |
34 38
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 · ( 𝑁 ↑ 𝐴 ) ) × ( ( 𝐾 ↑ 𝐵 ) × 𝐴 ) ) = ( 𝐶 · ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) ) ) |
40 |
1 2 3 4 5 6 7 8 9 10
|
srgpcompp |
⊢ ( 𝜑 → ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) = ( ( ( 𝑁 + 1 ) ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) |
41 |
40
|
oveq2d |
⊢ ( 𝜑 → ( 𝐶 · ( ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) × 𝐴 ) ) = ( 𝐶 · ( ( ( 𝑁 + 1 ) ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) ) |
42 |
30 39 41
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐶 · ( ( 𝑁 ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) × 𝐴 ) = ( 𝐶 · ( ( ( 𝑁 + 1 ) ↑ 𝐴 ) × ( 𝐾 ↑ 𝐵 ) ) ) ) |