| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srgz.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | srgz.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | srgz.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 6 | 1 4 5 2 3 | issrg | ⊢ ( 𝑅  ∈  SRing  ↔  ( 𝑅  ∈  CMnd  ∧  ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  ∀ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ·  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥  ·  𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦  ·  𝑧 ) ) )  ∧  ( (  0   ·  𝑥 )  =   0   ∧  ( 𝑥  ·   0  )  =   0  ) ) ) ) | 
						
							| 7 | 6 | simp3bi | ⊢ ( 𝑅  ∈  SRing  →  ∀ 𝑥  ∈  𝐵 ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ·  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥  ·  𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦  ·  𝑧 ) ) )  ∧  ( (  0   ·  𝑥 )  =   0   ∧  ( 𝑥  ·   0  )  =   0  ) ) ) | 
						
							| 8 | 7 | r19.21bi | ⊢ ( ( 𝑅  ∈  SRing  ∧  𝑥  ∈  𝐵 )  →  ( ∀ 𝑦  ∈  𝐵 ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ·  ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝑥  ·  𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥  ·  𝑧 ) )  ∧  ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  ·  𝑧 )  =  ( ( 𝑥  ·  𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦  ·  𝑧 ) ) )  ∧  ( (  0   ·  𝑥 )  =   0   ∧  ( 𝑥  ·   0  )  =   0  ) ) ) | 
						
							| 9 | 8 | simprrd | ⊢ ( ( 𝑅  ∈  SRing  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ·   0  )  =   0  ) | 
						
							| 10 | 9 | ralrimiva | ⊢ ( 𝑅  ∈  SRing  →  ∀ 𝑥  ∈  𝐵 ( 𝑥  ·   0  )  =   0  ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ·   0  )  =  ( 𝑋  ·   0  ) ) | 
						
							| 12 | 11 | eqeq1d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑥  ·   0  )  =   0   ↔  ( 𝑋  ·   0  )  =   0  ) ) | 
						
							| 13 | 12 | rspcv | ⊢ ( 𝑋  ∈  𝐵  →  ( ∀ 𝑥  ∈  𝐵 ( 𝑥  ·   0  )  =   0   →  ( 𝑋  ·   0  )  =   0  ) ) | 
						
							| 14 | 10 13 | mpan9 | ⊢ ( ( 𝑅  ∈  SRing  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ·   0  )  =   0  ) |