Step |
Hyp |
Ref |
Expression |
1 |
|
srng1.i |
⊢ ∗ = ( *𝑟 ‘ 𝑅 ) |
2 |
|
srng1.t |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
srngring |
⊢ ( 𝑅 ∈ *-Ring → 𝑅 ∈ Ring ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
5 |
4 2
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
6 |
|
eqid |
⊢ ( *rf ‘ 𝑅 ) = ( *rf ‘ 𝑅 ) |
7 |
4 1 6
|
stafval |
⊢ ( 1 ∈ ( Base ‘ 𝑅 ) → ( ( *rf ‘ 𝑅 ) ‘ 1 ) = ( ∗ ‘ 1 ) ) |
8 |
3 5 7
|
3syl |
⊢ ( 𝑅 ∈ *-Ring → ( ( *rf ‘ 𝑅 ) ‘ 1 ) = ( ∗ ‘ 1 ) ) |
9 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
10 |
9 6
|
srngrhm |
⊢ ( 𝑅 ∈ *-Ring → ( *rf ‘ 𝑅 ) ∈ ( 𝑅 RingHom ( oppr ‘ 𝑅 ) ) ) |
11 |
9 2
|
oppr1 |
⊢ 1 = ( 1r ‘ ( oppr ‘ 𝑅 ) ) |
12 |
2 11
|
rhm1 |
⊢ ( ( *rf ‘ 𝑅 ) ∈ ( 𝑅 RingHom ( oppr ‘ 𝑅 ) ) → ( ( *rf ‘ 𝑅 ) ‘ 1 ) = 1 ) |
13 |
10 12
|
syl |
⊢ ( 𝑅 ∈ *-Ring → ( ( *rf ‘ 𝑅 ) ‘ 1 ) = 1 ) |
14 |
8 13
|
eqtr3d |
⊢ ( 𝑅 ∈ *-Ring → ( ∗ ‘ 1 ) = 1 ) |