Step |
Hyp |
Ref |
Expression |
1 |
|
srngcl.i |
⊢ ∗ = ( *𝑟 ‘ 𝑅 ) |
2 |
|
srngcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
srngadd.p |
⊢ + = ( +g ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( *rf ‘ 𝑅 ) = ( *rf ‘ 𝑅 ) |
6 |
4 5
|
srngrhm |
⊢ ( 𝑅 ∈ *-Ring → ( *rf ‘ 𝑅 ) ∈ ( 𝑅 RingHom ( oppr ‘ 𝑅 ) ) ) |
7 |
|
rhmghm |
⊢ ( ( *rf ‘ 𝑅 ) ∈ ( 𝑅 RingHom ( oppr ‘ 𝑅 ) ) → ( *rf ‘ 𝑅 ) ∈ ( 𝑅 GrpHom ( oppr ‘ 𝑅 ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝑅 ∈ *-Ring → ( *rf ‘ 𝑅 ) ∈ ( 𝑅 GrpHom ( oppr ‘ 𝑅 ) ) ) |
9 |
4 3
|
oppradd |
⊢ + = ( +g ‘ ( oppr ‘ 𝑅 ) ) |
10 |
2 3 9
|
ghmlin |
⊢ ( ( ( *rf ‘ 𝑅 ) ∈ ( 𝑅 GrpHom ( oppr ‘ 𝑅 ) ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑋 + 𝑌 ) ) = ( ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) + ( ( *rf ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
11 |
8 10
|
syl3an1 |
⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑋 + 𝑌 ) ) = ( ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) + ( ( *rf ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
12 |
|
srngring |
⊢ ( 𝑅 ∈ *-Ring → 𝑅 ∈ Ring ) |
13 |
2 3
|
ringacl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
14 |
12 13
|
syl3an1 |
⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
15 |
2 1 5
|
stafval |
⊢ ( ( 𝑋 + 𝑌 ) ∈ 𝐵 → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑋 + 𝑌 ) ) = ( ∗ ‘ ( 𝑋 + 𝑌 ) ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ ( 𝑋 + 𝑌 ) ) = ( ∗ ‘ ( 𝑋 + 𝑌 ) ) ) |
17 |
2 1 5
|
stafval |
⊢ ( 𝑋 ∈ 𝐵 → ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) = ( ∗ ‘ 𝑋 ) ) |
18 |
17
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) = ( ∗ ‘ 𝑋 ) ) |
19 |
2 1 5
|
stafval |
⊢ ( 𝑌 ∈ 𝐵 → ( ( *rf ‘ 𝑅 ) ‘ 𝑌 ) = ( ∗ ‘ 𝑌 ) ) |
20 |
19
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ 𝑌 ) = ( ∗ ‘ 𝑌 ) ) |
21 |
18 20
|
oveq12d |
⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) + ( ( *rf ‘ 𝑅 ) ‘ 𝑌 ) ) = ( ( ∗ ‘ 𝑋 ) + ( ∗ ‘ 𝑌 ) ) ) |
22 |
11 16 21
|
3eqtr3d |
⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∗ ‘ ( 𝑋 + 𝑌 ) ) = ( ( ∗ ‘ 𝑋 ) + ( ∗ ‘ 𝑌 ) ) ) |