| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srngcl.i | ⊢  ∗   =  ( *𝑟 ‘ 𝑅 ) | 
						
							| 2 |  | srngcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( *rf ‘ 𝑅 )  =  ( *rf ‘ 𝑅 ) | 
						
							| 4 | 2 1 3 | stafval | ⊢ ( 𝑋  ∈  𝐵  →  ( ( *rf ‘ 𝑅 ) ‘ 𝑋 )  =  (  ∗  ‘ 𝑋 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵 )  →  ( ( *rf ‘ 𝑅 ) ‘ 𝑋 )  =  (  ∗  ‘ 𝑋 ) ) | 
						
							| 6 | 3 2 | srngf1o | ⊢ ( 𝑅  ∈  *-Ring  →  ( *rf ‘ 𝑅 ) : 𝐵 –1-1-onto→ 𝐵 ) | 
						
							| 7 |  | f1of | ⊢ ( ( *rf ‘ 𝑅 ) : 𝐵 –1-1-onto→ 𝐵  →  ( *rf ‘ 𝑅 ) : 𝐵 ⟶ 𝐵 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑅  ∈  *-Ring  →  ( *rf ‘ 𝑅 ) : 𝐵 ⟶ 𝐵 ) | 
						
							| 9 | 8 | ffvelcdmda | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵 )  →  ( ( *rf ‘ 𝑅 ) ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 10 | 5 9 | eqeltrrd | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵 )  →  (  ∗  ‘ 𝑋 )  ∈  𝐵 ) |