Metamath Proof Explorer


Theorem srngf1o

Description: The involution function in a star ring is a bijection. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses srngcnv.i = ( *rf𝑅 )
srngf1o.b 𝐵 = ( Base ‘ 𝑅 )
Assertion srngf1o ( 𝑅 ∈ *-Ring → : 𝐵1-1-onto𝐵 )

Proof

Step Hyp Ref Expression
1 srngcnv.i = ( *rf𝑅 )
2 srngf1o.b 𝐵 = ( Base ‘ 𝑅 )
3 eqid ( oppr𝑅 ) = ( oppr𝑅 )
4 3 1 srngrhm ( 𝑅 ∈ *-Ring → ∈ ( 𝑅 RingHom ( oppr𝑅 ) ) )
5 eqid ( Base ‘ ( oppr𝑅 ) ) = ( Base ‘ ( oppr𝑅 ) )
6 2 5 rhmf ( ∈ ( 𝑅 RingHom ( oppr𝑅 ) ) → : 𝐵 ⟶ ( Base ‘ ( oppr𝑅 ) ) )
7 ffn ( : 𝐵 ⟶ ( Base ‘ ( oppr𝑅 ) ) → Fn 𝐵 )
8 4 6 7 3syl ( 𝑅 ∈ *-Ring → Fn 𝐵 )
9 1 srngcnv ( 𝑅 ∈ *-Ring → = )
10 9 fneq1d ( 𝑅 ∈ *-Ring → ( Fn 𝐵 Fn 𝐵 ) )
11 8 10 mpbid ( 𝑅 ∈ *-Ring → Fn 𝐵 )
12 dff1o4 ( : 𝐵1-1-onto𝐵 ↔ ( Fn 𝐵 Fn 𝐵 ) )
13 8 11 12 sylanbrc ( 𝑅 ∈ *-Ring → : 𝐵1-1-onto𝐵 )