Metamath Proof Explorer


Theorem srnginvl

Description: The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypothesis srngstr.r 𝑅 = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ⟩ } )
Assertion srnginvl ( 𝑋 = ( *𝑟𝑅 ) )

Proof

Step Hyp Ref Expression
1 srngstr.r 𝑅 = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ⟩ } )
2 1 srngstr 𝑅 Struct ⟨ 1 , 4 ⟩
3 starvid *𝑟 = Slot ( *𝑟 ‘ ndx )
4 ssun2 { ⟨ ( *𝑟 ‘ ndx ) , ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ⟩ } )
5 4 1 sseqtrri { ⟨ ( *𝑟 ‘ ndx ) , ⟩ } ⊆ 𝑅
6 2 3 5 strfv ( 𝑋 = ( *𝑟𝑅 ) )