| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srngcl.i | ⊢  ∗   =  ( *𝑟 ‘ 𝑅 ) | 
						
							| 2 |  | srngcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | srngmul.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( oppr ‘ 𝑅 )  =  ( oppr ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( *rf ‘ 𝑅 )  =  ( *rf ‘ 𝑅 ) | 
						
							| 6 | 4 5 | srngrhm | ⊢ ( 𝑅  ∈  *-Ring  →  ( *rf ‘ 𝑅 )  ∈  ( 𝑅  RingHom  ( oppr ‘ 𝑅 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝑅 ) )  =  ( .r ‘ ( oppr ‘ 𝑅 ) ) | 
						
							| 8 | 2 3 7 | rhmmul | ⊢ ( ( ( *rf ‘ 𝑅 )  ∈  ( 𝑅  RingHom  ( oppr ‘ 𝑅 ) )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( *rf ‘ 𝑅 ) ‘ ( 𝑋  ·  𝑌 ) )  =  ( ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *rf ‘ 𝑅 ) ‘ 𝑌 ) ) ) | 
						
							| 9 | 6 8 | syl3an1 | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( *rf ‘ 𝑅 ) ‘ ( 𝑋  ·  𝑌 ) )  =  ( ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *rf ‘ 𝑅 ) ‘ 𝑌 ) ) ) | 
						
							| 10 | 2 3 4 7 | opprmul | ⊢ ( ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) ( ( *rf ‘ 𝑅 ) ‘ 𝑌 ) )  =  ( ( ( *rf ‘ 𝑅 ) ‘ 𝑌 )  ·  ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ) | 
						
							| 11 | 9 10 | eqtrdi | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( *rf ‘ 𝑅 ) ‘ ( 𝑋  ·  𝑌 ) )  =  ( ( ( *rf ‘ 𝑅 ) ‘ 𝑌 )  ·  ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ) ) | 
						
							| 12 |  | srngring | ⊢ ( 𝑅  ∈  *-Ring  →  𝑅  ∈  Ring ) | 
						
							| 13 | 2 3 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ·  𝑌 )  ∈  𝐵 ) | 
						
							| 14 | 12 13 | syl3an1 | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ·  𝑌 )  ∈  𝐵 ) | 
						
							| 15 | 2 1 5 | stafval | ⊢ ( ( 𝑋  ·  𝑌 )  ∈  𝐵  →  ( ( *rf ‘ 𝑅 ) ‘ ( 𝑋  ·  𝑌 ) )  =  (  ∗  ‘ ( 𝑋  ·  𝑌 ) ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( *rf ‘ 𝑅 ) ‘ ( 𝑋  ·  𝑌 ) )  =  (  ∗  ‘ ( 𝑋  ·  𝑌 ) ) ) | 
						
							| 17 | 2 1 5 | stafval | ⊢ ( 𝑌  ∈  𝐵  →  ( ( *rf ‘ 𝑅 ) ‘ 𝑌 )  =  (  ∗  ‘ 𝑌 ) ) | 
						
							| 18 | 17 | 3ad2ant3 | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( *rf ‘ 𝑅 ) ‘ 𝑌 )  =  (  ∗  ‘ 𝑌 ) ) | 
						
							| 19 | 2 1 5 | stafval | ⊢ ( 𝑋  ∈  𝐵  →  ( ( *rf ‘ 𝑅 ) ‘ 𝑋 )  =  (  ∗  ‘ 𝑋 ) ) | 
						
							| 20 | 19 | 3ad2ant2 | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( *rf ‘ 𝑅 ) ‘ 𝑋 )  =  (  ∗  ‘ 𝑋 ) ) | 
						
							| 21 | 18 20 | oveq12d | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( ( *rf ‘ 𝑅 ) ‘ 𝑌 )  ·  ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) )  =  ( (  ∗  ‘ 𝑌 )  ·  (  ∗  ‘ 𝑋 ) ) ) | 
						
							| 22 | 11 16 21 | 3eqtr3d | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ∗  ‘ ( 𝑋  ·  𝑌 ) )  =  ( (  ∗  ‘ 𝑌 )  ·  (  ∗  ‘ 𝑋 ) ) ) |