| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srngcl.i | ⊢  ∗   =  ( *𝑟 ‘ 𝑅 ) | 
						
							| 2 |  | srngcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 | 1 2 | srngcl | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵 )  →  (  ∗  ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 4 |  | eqid | ⊢ ( *rf ‘ 𝑅 )  =  ( *rf ‘ 𝑅 ) | 
						
							| 5 | 2 1 4 | stafval | ⊢ ( (  ∗  ‘ 𝑋 )  ∈  𝐵  →  ( ( *rf ‘ 𝑅 ) ‘ (  ∗  ‘ 𝑋 ) )  =  (  ∗  ‘ (  ∗  ‘ 𝑋 ) ) ) | 
						
							| 6 | 3 5 | syl | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵 )  →  ( ( *rf ‘ 𝑅 ) ‘ (  ∗  ‘ 𝑋 ) )  =  (  ∗  ‘ (  ∗  ‘ 𝑋 ) ) ) | 
						
							| 7 | 4 | srngcnv | ⊢ ( 𝑅  ∈  *-Ring  →  ( *rf ‘ 𝑅 )  =  ◡ ( *rf ‘ 𝑅 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵 )  →  ( *rf ‘ 𝑅 )  =  ◡ ( *rf ‘ 𝑅 ) ) | 
						
							| 9 | 8 | fveq1d | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵 )  →  ( ( *rf ‘ 𝑅 ) ‘ ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) )  =  ( ◡ ( *rf ‘ 𝑅 ) ‘ ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ) ) | 
						
							| 10 | 2 1 4 | stafval | ⊢ ( 𝑋  ∈  𝐵  →  ( ( *rf ‘ 𝑅 ) ‘ 𝑋 )  =  (  ∗  ‘ 𝑋 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵 )  →  ( ( *rf ‘ 𝑅 ) ‘ 𝑋 )  =  (  ∗  ‘ 𝑋 ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵 )  →  ( ( *rf ‘ 𝑅 ) ‘ ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) )  =  ( ( *rf ‘ 𝑅 ) ‘ (  ∗  ‘ 𝑋 ) ) ) | 
						
							| 13 | 4 2 | srngf1o | ⊢ ( 𝑅  ∈  *-Ring  →  ( *rf ‘ 𝑅 ) : 𝐵 –1-1-onto→ 𝐵 ) | 
						
							| 14 |  | f1ocnvfv1 | ⊢ ( ( ( *rf ‘ 𝑅 ) : 𝐵 –1-1-onto→ 𝐵  ∧  𝑋  ∈  𝐵 )  →  ( ◡ ( *rf ‘ 𝑅 ) ‘ ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 15 | 13 14 | sylan | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵 )  →  ( ◡ ( *rf ‘ 𝑅 ) ‘ ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 16 | 9 12 15 | 3eqtr3d | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵 )  →  ( ( *rf ‘ 𝑅 ) ‘ (  ∗  ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 17 | 6 16 | eqtr3d | ⊢ ( ( 𝑅  ∈  *-Ring  ∧  𝑋  ∈  𝐵 )  →  (  ∗  ‘ (  ∗  ‘ 𝑋 ) )  =  𝑋 ) |