Step |
Hyp |
Ref |
Expression |
1 |
|
srngcl.i |
⊢ ∗ = ( *𝑟 ‘ 𝑅 ) |
2 |
|
srngcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
1 2
|
srngcl |
⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( ∗ ‘ 𝑋 ) ∈ 𝐵 ) |
4 |
|
eqid |
⊢ ( *rf ‘ 𝑅 ) = ( *rf ‘ 𝑅 ) |
5 |
2 1 4
|
stafval |
⊢ ( ( ∗ ‘ 𝑋 ) ∈ 𝐵 → ( ( *rf ‘ 𝑅 ) ‘ ( ∗ ‘ 𝑋 ) ) = ( ∗ ‘ ( ∗ ‘ 𝑋 ) ) ) |
6 |
3 5
|
syl |
⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ ( ∗ ‘ 𝑋 ) ) = ( ∗ ‘ ( ∗ ‘ 𝑋 ) ) ) |
7 |
4
|
srngcnv |
⊢ ( 𝑅 ∈ *-Ring → ( *rf ‘ 𝑅 ) = ◡ ( *rf ‘ 𝑅 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( *rf ‘ 𝑅 ) = ◡ ( *rf ‘ 𝑅 ) ) |
9 |
8
|
fveq1d |
⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ) = ( ◡ ( *rf ‘ 𝑅 ) ‘ ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ) ) |
10 |
2 1 4
|
stafval |
⊢ ( 𝑋 ∈ 𝐵 → ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) = ( ∗ ‘ 𝑋 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) = ( ∗ ‘ 𝑋 ) ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ) = ( ( *rf ‘ 𝑅 ) ‘ ( ∗ ‘ 𝑋 ) ) ) |
13 |
4 2
|
srngf1o |
⊢ ( 𝑅 ∈ *-Ring → ( *rf ‘ 𝑅 ) : 𝐵 –1-1-onto→ 𝐵 ) |
14 |
|
f1ocnvfv1 |
⊢ ( ( ( *rf ‘ 𝑅 ) : 𝐵 –1-1-onto→ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ◡ ( *rf ‘ 𝑅 ) ‘ ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ) = 𝑋 ) |
15 |
13 14
|
sylan |
⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( ◡ ( *rf ‘ 𝑅 ) ‘ ( ( *rf ‘ 𝑅 ) ‘ 𝑋 ) ) = 𝑋 ) |
16 |
9 12 15
|
3eqtr3d |
⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( *rf ‘ 𝑅 ) ‘ ( ∗ ‘ 𝑋 ) ) = 𝑋 ) |
17 |
6 16
|
eqtr3d |
⊢ ( ( 𝑅 ∈ *-Ring ∧ 𝑋 ∈ 𝐵 ) → ( ∗ ‘ ( ∗ ‘ 𝑋 ) ) = 𝑋 ) |