Metamath Proof Explorer
Description: The involution function in a star ring is an antiautomorphism.
(Contributed by Mario Carneiro, 6-Oct-2015)
|
|
Ref |
Expression |
|
Hypotheses |
issrng.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
|
|
issrng.i |
⊢ ∗ = ( *rf ‘ 𝑅 ) |
|
Assertion |
srngrhm |
⊢ ( 𝑅 ∈ *-Ring → ∗ ∈ ( 𝑅 RingHom 𝑂 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
issrng.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
2 |
|
issrng.i |
⊢ ∗ = ( *rf ‘ 𝑅 ) |
3 |
1 2
|
issrng |
⊢ ( 𝑅 ∈ *-Ring ↔ ( ∗ ∈ ( 𝑅 RingHom 𝑂 ) ∧ ∗ = ◡ ∗ ) ) |
4 |
3
|
simplbi |
⊢ ( 𝑅 ∈ *-Ring → ∗ ∈ ( 𝑅 RingHom 𝑂 ) ) |