Metamath Proof Explorer


Theorem srngstr

Description: A constructed star ring is a structure. (Contributed by Mario Carneiro, 18-Nov-2013) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypothesis srngstr.r 𝑅 = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ⟩ } )
Assertion srngstr 𝑅 Struct ⟨ 1 , 4 ⟩

Proof

Step Hyp Ref Expression
1 srngstr.r 𝑅 = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ⟩ } )
2 eqid { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ }
3 2 rngstr { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } Struct ⟨ 1 , 3 ⟩
4 4nn 4 ∈ ℕ
5 starvndx ( *𝑟 ‘ ndx ) = 4
6 4 5 strle1 { ⟨ ( *𝑟 ‘ ndx ) , ⟩ } Struct ⟨ 4 , 4 ⟩
7 3lt4 3 < 4
8 3 6 7 strleun ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ⟩ } ) Struct ⟨ 1 , 4 ⟩
9 1 8 eqbrtri 𝑅 Struct ⟨ 1 , 4 ⟩