Description: Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ss2ab | ⊢ ( { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜓 } ↔ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜑 } | |
| 2 | nfab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∣ 𝜓 } | |
| 3 | 1 2 | dfssf | ⊢ ( { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜓 } ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } → 𝑥 ∈ { 𝑥 ∣ 𝜓 } ) ) |
| 4 | abid | ⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) | |
| 5 | abid | ⊢ ( 𝑥 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝜓 ) | |
| 6 | 4 5 | imbi12i | ⊢ ( ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } → 𝑥 ∈ { 𝑥 ∣ 𝜓 } ) ↔ ( 𝜑 → 𝜓 ) ) |
| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ { 𝑥 ∣ 𝜑 } → 𝑥 ∈ { 𝑥 ∣ 𝜓 } ) ↔ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) |
| 8 | 3 7 | bitri | ⊢ ( { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜓 } ↔ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) |