Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011) (Revised by Steven Nguyen, 28-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ss2abdv.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| Assertion | ss2abdv | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } ⊆ { 𝑥 ∣ 𝜒 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2abdv.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 2 | 1 | sbimdv | ⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) ) |
| 3 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 ) | |
| 4 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜒 } ↔ [ 𝑦 / 𝑥 ] 𝜒 ) | |
| 5 | 2 3 4 | 3imtr4g | ⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } → 𝑦 ∈ { 𝑥 ∣ 𝜒 } ) ) |
| 6 | 5 | ssrdv | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } ⊆ { 𝑥 ∣ 𝜒 } ) |