Metamath Proof Explorer


Theorem ss2abdvALT

Description: Alternate proof of ss2abdv . Shorter, but requiring ax-8 . (Contributed by Steven Nguyen, 28-Jun-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ss2abdvALT.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion ss2abdvALT ( 𝜑 → { 𝑥𝜓 } ⊆ { 𝑥𝜒 } )

Proof

Step Hyp Ref Expression
1 ss2abdvALT.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 sbimdv ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) )
3 df-clab ( 𝑦 ∈ { 𝑥𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 )
4 df-clab ( 𝑦 ∈ { 𝑥𝜒 } ↔ [ 𝑦 / 𝑥 ] 𝜒 )
5 2 3 4 3imtr4g ( 𝜑 → ( 𝑦 ∈ { 𝑥𝜓 } → 𝑦 ∈ { 𝑥𝜒 } ) )
6 5 ssrdv ( 𝜑 → { 𝑥𝜓 } ⊆ { 𝑥𝜒 } )