Description: Alternate proof of ss2abdv . Shorter, but requiring ax-8 . (Contributed by Steven Nguyen, 28-Jun-2024) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ss2abdvALT.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
Assertion | ss2abdvALT | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } ⊆ { 𝑥 ∣ 𝜒 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2abdvALT.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
2 | 1 | sbimdv | ⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) ) |
3 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 ) | |
4 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜒 } ↔ [ 𝑦 / 𝑥 ] 𝜒 ) | |
5 | 2 3 4 | 3imtr4g | ⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } → 𝑦 ∈ { 𝑥 ∣ 𝜒 } ) ) |
6 | 5 | ssrdv | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } ⊆ { 𝑥 ∣ 𝜒 } ) |